Extending the code in the open-source saemix package to fit joint models of longitudinal and time-to-event data

计算机科学 事件数据 事件(粒子物理) R包 接头(建筑物) 编码(集合论) 开源 源代码 程序设计语言 软件 集合(抽象数据类型) 过程(计算) 工程类 量子力学 物理 建筑工程
作者
Alexandra Lavalley‐Morelle,France Mentré,Emmanuelle Comets,Jimmy Mullaert
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:247: 108095-108095
标识
DOI:10.1016/j.cmpb.2024.108095
摘要

Joint modeling of longitudinal and time-to-event data has gained attention over recent years with extensive developments including nonlinear models for longitudinal outcomes and flexible time-to-event models for survival outcomes, possibly involving competing risks. However, in popular software such as R, the function used to describe the biomarker dynamic is mainly linear in the parameters, and the survival submodel relies on pre-implemented functions (exponential, Weibull, ...). The objective of this work is to extend the code from the saemix package (version 3.1 on CRAN) to fit parametric joint models where longitudinal submodels are not necessary linear in their parameters, with full user control over the model function. We used the saemix package, designed to fit nonlinear mixed-effects models (NLMEM) through the Stochastic Approximation Expectation Maximization (SAEM) algorithm, and extended the main functions to joint model estimation. To compute standard errors (SE) of parameter estimates, we implemented a recently developed stochastic algorithm. A simulation study was proposed to assess (i) the performances of parameter estimation, (ii) the SE computation and (iii) the type I error when testing independence between the two submodels. Four joint models were considered in the simulation study, combining a linear or nonlinear mixed-effects model for the longitudinal submodel, with a single terminal event or a competing risk model. For all simulation scenarios, parameters were precisely and accurately estimated with low bias and uncertainty. For complex joint models (with NLMEM), increasing the number of chains of the algorithm was necessary to reduce bias, but earlier censoring in the competing risk scenario still challenged the estimation. The empirical SE of parameters obtained over all simulations were very close to those computed with the stochastic algorithm. For more complex joint models (involving NLMEM), some estimates of random effects variances had higher uncertainty and their SE were moderately under-estimated. Finally, type I error was controlled for each joint model. saemix is a flexible open-source package and we adapted it to fit complex parametric joint models that may not be estimated using standard tools. Code and examples to help users get started are freely available on Github.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助李卓航采纳,获得20
刚刚
Liang发布了新的文献求助10
刚刚
华仔应助123rgk采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
杨昌琪完成签到,获得积分20
刚刚
pengyufen发布了新的文献求助10
刚刚
英俊的擎发布了新的文献求助10
2秒前
星辰大海应助小羊采纳,获得10
2秒前
ZJX应助爱听歌采纳,获得10
2秒前
3秒前
科研通AI6应助NotToday采纳,获得10
3秒前
清浅完成签到,获得积分10
3秒前
顺利的猕猴桃完成签到 ,获得积分10
3秒前
帽子戏法完成签到 ,获得积分10
3秒前
gdsfgdf完成签到,获得积分10
4秒前
冷酷严青发布了新的文献求助10
4秒前
斯文败类应助xxt采纳,获得10
5秒前
深情安青应助Assen采纳,获得10
6秒前
wei998发布了新的文献求助10
7秒前
7秒前
7秒前
思源应助张佳军采纳,获得10
7秒前
8秒前
hhh发布了新的文献求助10
8秒前
核桃酥完成签到,获得积分10
9秒前
cqh完成签到 ,获得积分10
10秒前
Liang完成签到,获得积分10
11秒前
11秒前
11秒前
顺利的猕猴桃关注了科研通微信公众号
11秒前
科研通AI6应助123采纳,获得10
11秒前
CC完成签到,获得积分10
12秒前
12秒前
吴晓燕发布了新的文献求助10
13秒前
zhangzy发布了新的文献求助12
13秒前
13秒前
妤懿完成签到 ,获得积分10
13秒前
14秒前
研友_VZG7GZ应助花舞霓裳采纳,获得30
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656560
求助须知:如何正确求助?哪些是违规求助? 4804154
关于积分的说明 15076185
捐赠科研通 4814847
什么是DOI,文献DOI怎么找? 2576000
邀请新用户注册赠送积分活动 1531353
关于科研通互助平台的介绍 1489900