Extending the code in the open-source saemix package to fit joint models of longitudinal and time-to-event data

计算机科学 事件数据 事件(粒子物理) R包 接头(建筑物) 编码(集合论) 开源 源代码 程序设计语言 软件 集合(抽象数据类型) 过程(计算) 工程类 量子力学 物理 建筑工程
作者
Alexandra Lavalley‐Morelle,France Mentré,Emmanuelle Comets,Jimmy Mullaert
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:247: 108095-108095
标识
DOI:10.1016/j.cmpb.2024.108095
摘要

Joint modeling of longitudinal and time-to-event data has gained attention over recent years with extensive developments including nonlinear models for longitudinal outcomes and flexible time-to-event models for survival outcomes, possibly involving competing risks. However, in popular software such as R, the function used to describe the biomarker dynamic is mainly linear in the parameters, and the survival submodel relies on pre-implemented functions (exponential, Weibull, ...). The objective of this work is to extend the code from the saemix package (version 3.1 on CRAN) to fit parametric joint models where longitudinal submodels are not necessary linear in their parameters, with full user control over the model function. We used the saemix package, designed to fit nonlinear mixed-effects models (NLMEM) through the Stochastic Approximation Expectation Maximization (SAEM) algorithm, and extended the main functions to joint model estimation. To compute standard errors (SE) of parameter estimates, we implemented a recently developed stochastic algorithm. A simulation study was proposed to assess (i) the performances of parameter estimation, (ii) the SE computation and (iii) the type I error when testing independence between the two submodels. Four joint models were considered in the simulation study, combining a linear or nonlinear mixed-effects model for the longitudinal submodel, with a single terminal event or a competing risk model. For all simulation scenarios, parameters were precisely and accurately estimated with low bias and uncertainty. For complex joint models (with NLMEM), increasing the number of chains of the algorithm was necessary to reduce bias, but earlier censoring in the competing risk scenario still challenged the estimation. The empirical SE of parameters obtained over all simulations were very close to those computed with the stochastic algorithm. For more complex joint models (involving NLMEM), some estimates of random effects variances had higher uncertainty and their SE were moderately under-estimated. Finally, type I error was controlled for each joint model. saemix is a flexible open-source package and we adapted it to fit complex parametric joint models that may not be estimated using standard tools. Code and examples to help users get started are freely available on Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助郑开司09采纳,获得10
刚刚
Jiangnj完成签到,获得积分10
刚刚
昵称发布了新的文献求助10
1秒前
含糊发布了新的文献求助10
1秒前
搜集达人应助8564523采纳,获得10
1秒前
无限的隶发布了新的文献求助10
1秒前
不安豁发布了新的文献求助10
1秒前
www发布了新的文献求助10
2秒前
2秒前
Crystal完成签到,获得积分10
3秒前
Laus发布了新的文献求助10
3秒前
orixero应助碱性沉默采纳,获得10
3秒前
今后应助仙子狗尾巴花采纳,获得10
3秒前
tylerconan完成签到 ,获得积分10
4秒前
4秒前
英俊的铭应助隐形的易巧采纳,获得10
5秒前
独特微笑发布了新的文献求助10
5秒前
学海无涯完成签到,获得积分10
5秒前
科研小民工应助机智苗采纳,获得30
5秒前
楼梯口无头女孩完成签到,获得积分10
8秒前
8秒前
Grayball应助gg采纳,获得10
8秒前
8秒前
456发布了新的文献求助10
8秒前
9秒前
凤凰山发布了新的文献求助10
9秒前
独特的绿蝶完成签到,获得积分10
9秒前
9秒前
清歌扶酒发布了新的文献求助10
9秒前
东风完成签到,获得积分10
10秒前
11秒前
呆萌幼晴完成签到,获得积分10
11秒前
qinqiny完成签到 ,获得积分10
12秒前
12秒前
周小慧完成签到,获得积分20
12秒前
轻松的人龙完成签到,获得积分20
12秒前
小蘑菇应助yxf采纳,获得10
12秒前
1199关注了科研通微信公众号
12秒前
星辰大海应助小赞芽采纳,获得10
12秒前
郑开司09发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762