Extending the code in the open-source saemix package to fit joint models of longitudinal and time-to-event data

计算机科学 事件数据 事件(粒子物理) R包 接头(建筑物) 编码(集合论) 开源 源代码 程序设计语言 软件 集合(抽象数据类型) 过程(计算) 工程类 物理 量子力学 建筑工程
作者
Alexandra Lavalley‐Morelle,France Mentré,Emmanuelle Comets,Jimmy Mullaert
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:247: 108095-108095
标识
DOI:10.1016/j.cmpb.2024.108095
摘要

Joint modeling of longitudinal and time-to-event data has gained attention over recent years with extensive developments including nonlinear models for longitudinal outcomes and flexible time-to-event models for survival outcomes, possibly involving competing risks. However, in popular software such as R, the function used to describe the biomarker dynamic is mainly linear in the parameters, and the survival submodel relies on pre-implemented functions (exponential, Weibull, ...). The objective of this work is to extend the code from the saemix package (version 3.1 on CRAN) to fit parametric joint models where longitudinal submodels are not necessary linear in their parameters, with full user control over the model function. We used the saemix package, designed to fit nonlinear mixed-effects models (NLMEM) through the Stochastic Approximation Expectation Maximization (SAEM) algorithm, and extended the main functions to joint model estimation. To compute standard errors (SE) of parameter estimates, we implemented a recently developed stochastic algorithm. A simulation study was proposed to assess (i) the performances of parameter estimation, (ii) the SE computation and (iii) the type I error when testing independence between the two submodels. Four joint models were considered in the simulation study, combining a linear or nonlinear mixed-effects model for the longitudinal submodel, with a single terminal event or a competing risk model. For all simulation scenarios, parameters were precisely and accurately estimated with low bias and uncertainty. For complex joint models (with NLMEM), increasing the number of chains of the algorithm was necessary to reduce bias, but earlier censoring in the competing risk scenario still challenged the estimation. The empirical SE of parameters obtained over all simulations were very close to those computed with the stochastic algorithm. For more complex joint models (involving NLMEM), some estimates of random effects variances had higher uncertainty and their SE were moderately under-estimated. Finally, type I error was controlled for each joint model. saemix is a flexible open-source package and we adapted it to fit complex parametric joint models that may not be estimated using standard tools. Code and examples to help users get started are freely available on Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文轩完成签到 ,获得积分10
刚刚
嘻嘻发布了新的文献求助10
刚刚
1秒前
ldkl应助拔刀斩落樱采纳,获得50
1秒前
温暖寻雪发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
舒心靖琪完成签到 ,获得积分10
3秒前
3秒前
4秒前
乐乐应助天选小牛马采纳,获得10
4秒前
4秒前
Icberg发布了新的文献求助10
4秒前
LLL发布了新的文献求助10
5秒前
Candy2024完成签到,获得积分10
5秒前
6秒前
廿三发布了新的文献求助10
6秒前
7秒前
喝一杯完成签到,获得积分10
7秒前
瘦瘦鸵鸟完成签到,获得积分10
7秒前
7秒前
禾风发布了新的文献求助10
8秒前
8秒前
deway发布了新的文献求助10
8秒前
谦让的沛芹完成签到,获得积分10
8秒前
zzzy发布了新的文献求助10
9秒前
科研通AI2S应助allglitters采纳,获得10
9秒前
hailan发布了新的文献求助10
9秒前
脑洞疼应助Hao采纳,获得10
10秒前
RHIN关注了科研通微信公众号
11秒前
深情隶完成签到,获得积分10
11秒前
文轩关注了科研通微信公众号
12秒前
西瓜发布了新的文献求助10
12秒前
酷炫的安青完成签到 ,获得积分20
12秒前
WWwww完成签到,获得积分10
13秒前
15秒前
王小明发布了新的文献求助10
16秒前
17秒前
可爱的函函应助Yanzi_采纳,获得10
17秒前
Icberg完成签到,获得积分10
18秒前
张泸尹完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Methane Conversion Routes 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048920
求助须知:如何正确求助?哪些是违规求助? 4277164
关于积分的说明 13332673
捐赠科研通 4091710
什么是DOI,文献DOI怎么找? 2239234
邀请新用户注册赠送积分活动 1246058
关于科研通互助平台的介绍 1174695