Extending the code in the open-source saemix package to fit joint models of longitudinal and time-to-event data

计算机科学 事件数据 事件(粒子物理) R包 接头(建筑物) 编码(集合论) 开源 源代码 程序设计语言 软件 集合(抽象数据类型) 过程(计算) 工程类 量子力学 物理 建筑工程
作者
Alexandra Lavalley‐Morelle,France Mentré,Emmanuelle Comets,Jimmy Mullaert
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:247: 108095-108095
标识
DOI:10.1016/j.cmpb.2024.108095
摘要

Joint modeling of longitudinal and time-to-event data has gained attention over recent years with extensive developments including nonlinear models for longitudinal outcomes and flexible time-to-event models for survival outcomes, possibly involving competing risks. However, in popular software such as R, the function used to describe the biomarker dynamic is mainly linear in the parameters, and the survival submodel relies on pre-implemented functions (exponential, Weibull, ...). The objective of this work is to extend the code from the saemix package (version 3.1 on CRAN) to fit parametric joint models where longitudinal submodels are not necessary linear in their parameters, with full user control over the model function. We used the saemix package, designed to fit nonlinear mixed-effects models (NLMEM) through the Stochastic Approximation Expectation Maximization (SAEM) algorithm, and extended the main functions to joint model estimation. To compute standard errors (SE) of parameter estimates, we implemented a recently developed stochastic algorithm. A simulation study was proposed to assess (i) the performances of parameter estimation, (ii) the SE computation and (iii) the type I error when testing independence between the two submodels. Four joint models were considered in the simulation study, combining a linear or nonlinear mixed-effects model for the longitudinal submodel, with a single terminal event or a competing risk model. For all simulation scenarios, parameters were precisely and accurately estimated with low bias and uncertainty. For complex joint models (with NLMEM), increasing the number of chains of the algorithm was necessary to reduce bias, but earlier censoring in the competing risk scenario still challenged the estimation. The empirical SE of parameters obtained over all simulations were very close to those computed with the stochastic algorithm. For more complex joint models (involving NLMEM), some estimates of random effects variances had higher uncertainty and their SE were moderately under-estimated. Finally, type I error was controlled for each joint model. saemix is a flexible open-source package and we adapted it to fit complex parametric joint models that may not be estimated using standard tools. Code and examples to help users get started are freely available on Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TMX完成签到,获得积分20
刚刚
soldatJiang发布了新的文献求助10
1秒前
NL14D发布了新的文献求助10
1秒前
wq1020完成签到,获得积分10
1秒前
1秒前
科研通AI5应助孟欣玥采纳,获得20
2秒前
2秒前
Ava应助什么东西这么好看采纳,获得10
2秒前
超级丝发布了新的文献求助10
2秒前
TMX发布了新的文献求助10
5秒前
星星完成签到,获得积分10
5秒前
wenbinvan完成签到,获得积分0
5秒前
7秒前
科研通AI2S应助SAVP采纳,获得10
7秒前
Lycerdoctor发布了新的文献求助10
7秒前
李健应助wudan采纳,获得10
8秒前
8秒前
ANmin发布了新的文献求助10
8秒前
Inory007发布了新的文献求助10
9秒前
9秒前
桐桐应助冰棍采纳,获得10
9秒前
牧歌完成签到,获得积分0
9秒前
烟花应助怡然的一斩采纳,获得10
9秒前
10秒前
10秒前
SciGPT应助Nxxxxxx采纳,获得10
10秒前
11秒前
丘比特应助汪汪采纳,获得10
11秒前
千余发布了新的文献求助10
11秒前
田様应助爱听歌的树叶采纳,获得10
13秒前
zwy109发布了新的文献求助10
13秒前
loski发布了新的文献求助10
14秒前
鸭梨发布了新的文献求助10
15秒前
忧郁含海发布了新的文献求助10
16秒前
顾矜应助圆滚滚采纳,获得10
16秒前
所所应助平常的紫蓝采纳,获得10
18秒前
19秒前
20秒前
子弹头完成签到,获得积分10
20秒前
完美世界应助yyyq采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028