Extending the code in the open-source saemix package to fit joint models of longitudinal and time-to-event data

计算机科学 事件数据 事件(粒子物理) R包 接头(建筑物) 编码(集合论) 开源 源代码 程序设计语言 软件 集合(抽象数据类型) 过程(计算) 工程类 物理 量子力学 建筑工程
作者
Alexandra Lavalley‐Morelle,France Mentré,Emmanuelle Comets,Jimmy Mullaert
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:247: 108095-108095
标识
DOI:10.1016/j.cmpb.2024.108095
摘要

Joint modeling of longitudinal and time-to-event data has gained attention over recent years with extensive developments including nonlinear models for longitudinal outcomes and flexible time-to-event models for survival outcomes, possibly involving competing risks. However, in popular software such as R, the function used to describe the biomarker dynamic is mainly linear in the parameters, and the survival submodel relies on pre-implemented functions (exponential, Weibull, ...). The objective of this work is to extend the code from the saemix package (version 3.1 on CRAN) to fit parametric joint models where longitudinal submodels are not necessary linear in their parameters, with full user control over the model function. We used the saemix package, designed to fit nonlinear mixed-effects models (NLMEM) through the Stochastic Approximation Expectation Maximization (SAEM) algorithm, and extended the main functions to joint model estimation. To compute standard errors (SE) of parameter estimates, we implemented a recently developed stochastic algorithm. A simulation study was proposed to assess (i) the performances of parameter estimation, (ii) the SE computation and (iii) the type I error when testing independence between the two submodels. Four joint models were considered in the simulation study, combining a linear or nonlinear mixed-effects model for the longitudinal submodel, with a single terminal event or a competing risk model. For all simulation scenarios, parameters were precisely and accurately estimated with low bias and uncertainty. For complex joint models (with NLMEM), increasing the number of chains of the algorithm was necessary to reduce bias, but earlier censoring in the competing risk scenario still challenged the estimation. The empirical SE of parameters obtained over all simulations were very close to those computed with the stochastic algorithm. For more complex joint models (involving NLMEM), some estimates of random effects variances had higher uncertainty and their SE were moderately under-estimated. Finally, type I error was controlled for each joint model. saemix is a flexible open-source package and we adapted it to fit complex parametric joint models that may not be estimated using standard tools. Code and examples to help users get started are freely available on Github.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
1秒前
田様应助谨慎跳跳糖采纳,获得10
2秒前
李兴完成签到 ,获得积分10
3秒前
Xylene完成签到 ,获得积分10
3秒前
不会学术的羊完成签到,获得积分10
3秒前
3秒前
微笑盼易完成签到 ,获得积分10
4秒前
小白发布了新的文献求助10
6秒前
7秒前
香蕉觅云应助陈曦最帅的采纳,获得10
7秒前
传奇3应助meizi采纳,获得10
7秒前
13秒前
大模型应助山本无山采纳,获得30
14秒前
科研路上的干饭桶完成签到,获得积分10
14秒前
14秒前
充电宝应助zxy采纳,获得10
15秒前
Jessie0625完成签到,获得积分10
15秒前
小二郎应助小白采纳,获得10
15秒前
18秒前
sciN完成签到 ,获得积分10
18秒前
meizi发布了新的文献求助10
20秒前
21秒前
桃铱铱发布了新的文献求助10
23秒前
DYN完成签到,获得积分10
24秒前
zxy完成签到,获得积分10
24秒前
机智的紫丝完成签到,获得积分10
26秒前
梅子完成签到,获得积分10
26秒前
充电宝应助oookkay采纳,获得10
26秒前
平淡发布了新的文献求助10
27秒前
GG完成签到,获得积分10
27秒前
28秒前
科研通AI2S应助温婉的篮球采纳,获得10
29秒前
meizi完成签到,获得积分10
29秒前
搜集达人应助花痴的易真采纳,获得10
29秒前
ured发布了新的文献求助10
32秒前
Aline完成签到,获得积分10
33秒前
34秒前
34秒前
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159782
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889078
捐赠科研通 2469740
什么是DOI,文献DOI怎么找? 1315055
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012