Integrating artificial intelligence into the modernization of traditional Chinese medicine industry: a review

现代化理论 标准化 中医药 质量(理念) 中国 传统医学 工程伦理学 人工智能 医学 计算机科学 工程类 替代医学 政治学 经济增长 经济 法学 病理 哲学 操作系统 认识论
作者
Enyu Zhou,Qin Shen,Yang Hou
出处
期刊:Frontiers in Pharmacology [Frontiers Media SA]
卷期号:15 被引量:15
标识
DOI:10.3389/fphar.2024.1181183
摘要

Traditional Chinese medicine (TCM) is the practical experience and summary of the Chinese nation for thousands of years. It shows great potential in treating various chronic diseases, complex diseases and major infectious diseases, and has gradually attracted the attention of people all over the world. However, due to the complexity of prescription and action mechanism of TCM, the development of TCM industry is still in a relatively conservative stage. With the rise of artificial intelligence technology in various fields, many scholars began to apply artificial intelligence technology to traditional Chinese medicine industry and made remarkable progress. This paper comprehensively summarizes the important role of artificial intelligence in the development of traditional Chinese medicine industry from various aspects, including new drug discovery, data mining, quality standardization and industry technology of traditional Chinese medicine. The limitations of artificial intelligence in these applications are also emphasized, including the lack of pharmacological research, database quality problems and the challenges brought by human-computer interaction. Nevertheless, the development of artificial intelligence has brought new opportunities and innovations to the modernization of traditional Chinese medicine. Integrating artificial intelligence technology into the comprehensive application of Chinese medicine industry is expected to overcome the major problems faced by traditional Chinese medicine industry and further promote the modernization of the whole traditional Chinese medicine industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快夕阳完成签到,获得积分10
2秒前
Orange应助三木采纳,获得10
2秒前
123完成签到,获得积分10
3秒前
ME3完成签到,获得积分10
3秒前
共享精神应助tytyty采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
aka2012发布了新的文献求助30
5秒前
5秒前
5秒前
WendyWen发布了新的文献求助200
6秒前
6秒前
TongMan完成签到,获得积分20
6秒前
华仔应助谢谢sang采纳,获得10
6秒前
小衰帅完成签到,获得积分10
6秒前
gyx发布了新的文献求助10
7秒前
科研通AI2S应助开放的大侠采纳,获得10
7秒前
小二郎应助freebird采纳,获得30
7秒前
20231125完成签到,获得积分10
8秒前
四憙发布了新的文献求助10
8秒前
星星完成签到,获得积分10
8秒前
小崽总完成签到,获得积分10
9秒前
是微微发布了新的文献求助10
9秒前
Joy发布了新的文献求助10
9秒前
kx发布了新的文献求助10
10秒前
桃桃奶盖发布了新的文献求助10
10秒前
化鼠发布了新的文献求助10
10秒前
10秒前
蘸水发布了新的文献求助10
10秒前
洞两发布了新的文献求助10
11秒前
科研通AI5应助坦率的果汁采纳,获得10
11秒前
TongMan发布了新的文献求助10
11秒前
xol完成签到 ,获得积分10
11秒前
星星发布了新的文献求助10
12秒前
12秒前
12秒前
hhhhhh完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199