医学
超声学家
分割
深度学习
人工智能
颈淋巴结
超声波
甲状腺癌
放射科
转移
甲状腺
癌症
计算机科学
内科学
作者
Yuquan Yuan,Shaodong Hou,Xing Wu,Yuteng Wang,Yiceng Sun,Zeyu Yang,Supeng Yin,Fan Zhang
标识
DOI:10.1016/j.asjsur.2024.02.140
摘要
It is crucial to preoperatively diagnose lateral cervical lymph node (LN) metastases (LNMs) in papillary thyroid carcinoma (PTC) patients. This study aims to develop deep-learning models for the automatic segmentation and classification of LNM on original ultrasound images. This study included 1000 lateral cervical LN ultrasound images (consisting of 512 benign and 558 metastatic LNs) collected from 728 patients at the Chongqing General Hospital between March 2022 and July 2023. Three instance segmentation models (MaskRCNN, SOLO and Mask2Former) were constructed to segment and classify ultrasound images of lateral cervical LNs by recognizing each object individually and in a pixel-by-pixel manner. The segmentation and classification results of the three models were compared with an experienced sonographer in the test set. Upon completion of a 200-epoch learning cycle, the loss among the three unique models became negligible. To evaluate the performance of the deep-learning models, the intersection over union threshold was set at 0.75. The mean average precision scores for MaskRCNN, SOLO and Mask2Former were 88.8%, 86.7% and 89.5%, respectively. The segmentation accuracies of the MaskRCNN, SOLO, Mask2Former models and sonographer were 85.6%, 88.0%, 89.5% and 82.3%, respectively. The classification AUCs of the MaskRCNN, SOLO, Mask2Former models and sonographer were 0.886, 0.869, 0.90.2 and 0.852 in the test set, respectively. The deep learning models could automatically segment and classify lateral cervical LNs with an AUC of 0.92. This approach may serve as a promising tool to assist sonographers in diagnosing lateral cervical LNMs among patients with PTC.
科研通智能强力驱动
Strongly Powered by AbleSci AI