Application of deep-learning to the automatic segmentation and classification of lateral lymph nodes on ultrasound images of papillary thyroid carcinoma

医学 超声学家 分割 深度学习 人工智能 颈淋巴结 超声波 甲状腺癌 放射科 转移 甲状腺 癌症 计算机科学 内科学
作者
Yuquan Yuan,Shaodong Hou,Xing Wu,Yuteng Wang,Yiceng Sun,Zeyu Yang,Supeng Yin,Fan Zhang
出处
期刊:Asian Journal of Surgery [Elsevier BV]
被引量:1
标识
DOI:10.1016/j.asjsur.2024.02.140
摘要

It is crucial to preoperatively diagnose lateral cervical lymph node (LN) metastases (LNMs) in papillary thyroid carcinoma (PTC) patients. This study aims to develop deep-learning models for the automatic segmentation and classification of LNM on original ultrasound images. This study included 1000 lateral cervical LN ultrasound images (consisting of 512 benign and 558 metastatic LNs) collected from 728 patients at the Chongqing General Hospital between March 2022 and July 2023. Three instance segmentation models (MaskRCNN, SOLO and Mask2Former) were constructed to segment and classify ultrasound images of lateral cervical LNs by recognizing each object individually and in a pixel-by-pixel manner. The segmentation and classification results of the three models were compared with an experienced sonographer in the test set. Upon completion of a 200-epoch learning cycle, the loss among the three unique models became negligible. To evaluate the performance of the deep-learning models, the intersection over union threshold was set at 0.75. The mean average precision scores for MaskRCNN, SOLO and Mask2Former were 88.8%, 86.7% and 89.5%, respectively. The segmentation accuracies of the MaskRCNN, SOLO, Mask2Former models and sonographer were 85.6%, 88.0%, 89.5% and 82.3%, respectively. The classification AUCs of the MaskRCNN, SOLO, Mask2Former models and sonographer were 0.886, 0.869, 0.90.2 and 0.852 in the test set, respectively. The deep learning models could automatically segment and classify lateral cervical LNs with an AUC of 0.92. This approach may serve as a promising tool to assist sonographers in diagnosing lateral cervical LNMs among patients with PTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的兔子完成签到,获得积分10
刚刚
大脚发布了新的文献求助10
1秒前
Lynn发布了新的文献求助10
3秒前
xiaozi完成签到 ,获得积分10
3秒前
没耳朵的小仙女完成签到,获得积分10
3秒前
ZhouTY完成签到,获得积分10
4秒前
Lynn完成签到,获得积分10
9秒前
天天快乐应助着急的绿兰采纳,获得10
9秒前
Roche完成签到,获得积分10
12秒前
12秒前
17秒前
oc666888完成签到,获得积分10
19秒前
超级盼烟完成签到,获得积分10
21秒前
22秒前
22秒前
赘婿应助koreey采纳,获得10
23秒前
科研通AI5应助雪白的如天采纳,获得10
24秒前
lipengjiajun完成签到,获得积分10
26秒前
26秒前
roclie完成签到,获得积分10
27秒前
27秒前
唐正皓发布了新的文献求助30
27秒前
30秒前
30秒前
july13发布了新的文献求助30
31秒前
激昂的梦山完成签到 ,获得积分10
32秒前
愉快之槐完成签到,获得积分10
32秒前
33秒前
nbing完成签到,获得积分10
35秒前
35秒前
sosodo发布了新的文献求助10
35秒前
35秒前
萌酱发布了新的文献求助10
36秒前
着急的绿兰完成签到,获得积分10
37秒前
www完成签到,获得积分10
38秒前
知世完成签到,获得积分10
38秒前
38秒前
理想国的建造者完成签到,获得积分10
39秒前
听白发布了新的文献求助10
39秒前
koreey发布了新的文献求助10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755065
求助须知:如何正确求助?哪些是违规求助? 3298314
关于积分的说明 10104502
捐赠科研通 3012928
什么是DOI,文献DOI怎么找? 1654878
邀请新用户注册赠送积分活动 789194
科研通“疑难数据库(出版商)”最低求助积分说明 753233