Selecting essential factors for predicting reference crop evapotranspiration through tree-based machine learning and Bayesian optimization

蒸散量 Boosting(机器学习) 灌溉调度 梯度升压 随机森林 贝叶斯概率 统计 树(集合论) 数学 计算机科学 机器学习 环境科学 生态学 数学分析 生物 土壤科学 土壤水分
作者
Long Zhao,Yuhang Wang,Yi Shi,Xinbo Zhao,Ningbo Cui,Shuo Zhang
出处
期刊:Theoretical and Applied Climatology [Springer Nature]
被引量:2
标识
DOI:10.1007/s00704-023-04760-2
摘要

Reference crop evapotranspiration (ETO) is a basic component of the hydrological cycle and its estimation is critical for agricultural water resource management and scheduling. In this study, three tree-based machine learning algorithms (random forest [RF], gradient boosting decision tree [GBDT], and extreme gradient boosting [XGBoost]) were adopted to determine the essential factors for ETO prediction. The tree-based models were optimized using the Bayesian optimization (BO) algorithm and were compared with three standalone models in terms of daily ETO and monthly mean ETO estimations in North China, with different input combinations of essential variables. The results indicated that solar radiation (Rs) and air temperature (Ts), including the maximum, minimum, and average temperatures, in daily ETO were the key variables affecting model prediction accuracy. Rs was the most influential factor in the monthly average ETO model followed by Ts. Both relative humidity (RH) and wind speed at 2 m (U2) had little impact on ETO prediction at different scales, although their importance differed. Compared with the GBDT and RF models, the XGBoost model exhibited the best performance for daily ETO and monthly mean ETO estimations. The hybrid tree-based models with the BO algorithm outperformed standalone tree-based models. Overall, compared with the other inputs, the model with three inputs (Rs, Ts, and RH/U2) had the highest accuracy. The BO-XGBoost model exhibited superior performance in terms of the global performance index (GPI) for daily ETO and monthly mean ETO predictions and is recommended as a more accurate model for predicting daily ETO and monthly mean ETO in North China or areas with a similar climate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等等完成签到,获得积分10
刚刚
1秒前
1秒前
小蘑菇应助WWW采纳,获得10
3秒前
等等发布了新的文献求助10
4秒前
冰留完成签到 ,获得积分10
4秒前
4秒前
red发布了新的文献求助10
5秒前
pp完成签到,获得积分10
8秒前
8秒前
儒雅沛凝完成签到 ,获得积分10
9秒前
小小沙完成签到 ,获得积分10
10秒前
10秒前
打打应助fighting采纳,获得10
10秒前
坦率的从波完成签到 ,获得积分10
11秒前
小七完成签到,获得积分10
14秒前
大_pan完成签到,获得积分10
15秒前
子车谷波完成签到,获得积分10
15秒前
腾腾完成签到 ,获得积分10
15秒前
儒雅的焦完成签到,获得积分10
16秒前
17秒前
19秒前
一一完成签到,获得积分10
19秒前
20秒前
20秒前
chawenxian2025完成签到,获得积分10
20秒前
21秒前
蔡夜安完成签到,获得积分10
22秒前
Apr9810h完成签到 ,获得积分10
23秒前
奥里给发布了新的文献求助10
23秒前
爱笑的冷风完成签到 ,获得积分10
23秒前
ajiduo完成签到 ,获得积分10
23秒前
火星上的小蚂蚁完成签到,获得积分0
24秒前
fighting发布了新的文献求助10
24秒前
飞翔的荷兰人完成签到,获得积分10
25秒前
25秒前
高手如林完成签到,获得积分10
26秒前
顺利秋灵发布了新的文献求助10
27秒前
白日梦小说家完成签到 ,获得积分10
28秒前
科研小笨猪完成签到,获得积分10
29秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Subjective Well-Being and Life Satisfaction (第二版) 1000
The Data Economy: Tools and Applications 1000
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Acute Care Physical Therapy 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3095267
求助须知:如何正确求助?哪些是违规求助? 2747176
关于积分的说明 7593269
捐赠科研通 2398823
什么是DOI,文献DOI怎么找? 1272701
科研通“疑难数据库(出版商)”最低求助积分说明 615427
版权声明 598931