Selecting essential factors for predicting reference crop evapotranspiration through tree-based machine learning and Bayesian optimization

蒸散量 Boosting(机器学习) 灌溉调度 梯度升压 随机森林 贝叶斯概率 统计 树(集合论) 数学 计算机科学 机器学习 环境科学 生态学 数学分析 生物 土壤科学 土壤水分
作者
Long Zhao,Yuhang Wang,Yi Shi,Xinbo Zhao,Ningbo Cui,Shuo Zhang
出处
期刊:Theoretical and Applied Climatology [Springer Science+Business Media]
被引量:2
标识
DOI:10.1007/s00704-023-04760-2
摘要

Reference crop evapotranspiration (ETO) is a basic component of the hydrological cycle and its estimation is critical for agricultural water resource management and scheduling. In this study, three tree-based machine learning algorithms (random forest [RF], gradient boosting decision tree [GBDT], and extreme gradient boosting [XGBoost]) were adopted to determine the essential factors for ETO prediction. The tree-based models were optimized using the Bayesian optimization (BO) algorithm and were compared with three standalone models in terms of daily ETO and monthly mean ETO estimations in North China, with different input combinations of essential variables. The results indicated that solar radiation (Rs) and air temperature (Ts), including the maximum, minimum, and average temperatures, in daily ETO were the key variables affecting model prediction accuracy. Rs was the most influential factor in the monthly average ETO model followed by Ts. Both relative humidity (RH) and wind speed at 2 m (U2) had little impact on ETO prediction at different scales, although their importance differed. Compared with the GBDT and RF models, the XGBoost model exhibited the best performance for daily ETO and monthly mean ETO estimations. The hybrid tree-based models with the BO algorithm outperformed standalone tree-based models. Overall, compared with the other inputs, the model with three inputs (Rs, Ts, and RH/U2) had the highest accuracy. The BO-XGBoost model exhibited superior performance in terms of the global performance index (GPI) for daily ETO and monthly mean ETO predictions and is recommended as a more accurate model for predicting daily ETO and monthly mean ETO in North China or areas with a similar climate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定大雁关注了科研通微信公众号
刚刚
刚刚
钱多多完成签到,获得积分10
1秒前
王岚发布了新的文献求助10
1秒前
Owen应助栗子采纳,获得10
1秒前
1秒前
欣妹儿发布了新的文献求助10
2秒前
2秒前
包容仙人掌完成签到,获得积分10
2秒前
受伤灵薇完成签到,获得积分10
3秒前
yeyeye发布了新的文献求助10
3秒前
onepine发布了新的文献求助10
3秒前
colormeblue完成签到 ,获得积分10
3秒前
张开心发布了新的文献求助10
3秒前
思源应助Adeus采纳,获得10
3秒前
4秒前
毛毛虫完成签到,获得积分10
4秒前
深情安青应助牛至采纳,获得10
4秒前
4秒前
xixi发布了新的文献求助10
5秒前
5秒前
酋长家大母鹅完成签到,获得积分10
6秒前
霡霂完成签到,获得积分10
6秒前
ASD发布了新的文献求助10
6秒前
福泽多发布了新的文献求助10
6秒前
6秒前
6秒前
猪猪hero发布了新的文献求助10
7秒前
Adler完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
梅子菁完成签到,获得积分10
9秒前
yu完成签到,获得积分20
10秒前
栗子发布了新的文献求助10
10秒前
yeyeye完成签到,获得积分10
11秒前
过时的笙完成签到,获得积分10
11秒前
坦率寻雪发布了新的文献求助10
11秒前
Ava应助Shuyinganxiang采纳,获得10
12秒前
orixero应助信仰采纳,获得10
12秒前
uniphoton发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069