The transcriptomic landscape of canonical activation of NLRP3 inflammasome from bone marrow-derived macrophages

炎症体 非规范的 目标2 转录组 生物 细胞生物学 基因 计算生物学 诱饵 化学 核糖核酸 生物化学 基因表达 受体
作者
Zhuo Zuo,Jiajia Shi,Ya Xing Wang,Zhongqian Yin,Zhe Wang,Zhouqi Yang,Bin Jia,Yulong Sun
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier BV]
卷期号:694: 149409-149409
标识
DOI:10.1016/j.bbrc.2023.149409
摘要

The NLRP3 inflammasome has gained significant attention due to its participation in diverse cellular processes. Nevertheless, the detailed framework of the canonical NLRP3 inflammasome assembly still remains unrevealed. This study aims to elucidate the transcriptomic landscape of the various stages involved in the canonical activation of the NLRP3 inflammasome in BMDMs by integrating RNA-seq, bioinformatics, and molecular dynamics analyses. The model for the canonical activation of the NLRP3 inflammasome was confirmed through morphological observations, functional assessments (ELISA and LDH), and protein detection (western blot). Subsequently, cells were subjected to RNA sequencing following three groups: control, priming (LPS 500 ng/ml, 4 h), and activation (LPS 500 ng/ml, 4 h; ATP 5 mM, 1 h). A total of 9116 differentially expressed genes (DEGs) were identified, which exerted regulatory effects on various pathways, including cell metabolism, ion fluxes, post-translational modifications, and organelles. Subsequently, six hub genes (Sirt3, Stat3, Syk, Trpm2, Tspo, and Txnip) were identified via integrating literature review and database screening. Finally, the three-dimensional structures of these six hub proteins were obtained using the MD-optimized RoseTTAFold and Gromacs simulations (at least 200 ns). In summary, our research offers novel insights into the transcriptomic-level understanding of the assembly of the canonical NLRP3 inflammasome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的鞅完成签到,获得积分10
刚刚
Young发布了新的文献求助10
1秒前
Ya发布了新的文献求助10
1秒前
mm发布了新的文献求助10
1秒前
1秒前
啾一口香菜完成签到 ,获得积分10
1秒前
牛马发布了新的文献求助10
1秒前
forever发布了新的文献求助10
1秒前
轻松千山完成签到,获得积分10
2秒前
mount发布了新的文献求助20
3秒前
PJ完成签到,获得积分10
3秒前
小白完成签到,获得积分20
3秒前
Queenie完成签到,获得积分10
3秒前
科研通AI5应助BYG采纳,获得10
3秒前
cqsuper完成签到,获得积分10
4秒前
Fengzhen007完成签到,获得积分10
4秒前
儿学化学打断腿完成签到,获得积分10
4秒前
shimly0101xx发布了新的文献求助10
4秒前
脑洞疼应助半导体物理采纳,获得10
4秒前
烟花应助张志伟采纳,获得10
4秒前
4秒前
凉白开完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
WFLLL完成签到,获得积分10
6秒前
领导范儿应助zhouyu采纳,获得10
6秒前
雨中客发布了新的文献求助10
6秒前
悦耳荟发布了新的文献求助10
6秒前
CSII完成签到,获得积分20
7秒前
沫沫完成签到 ,获得积分10
8秒前
anydwason发布了新的文献求助10
9秒前
牛马完成签到,获得积分20
9秒前
Fffm完成签到,获得积分10
9秒前
丘比特应助Young采纳,获得10
9秒前
10秒前
10秒前
10秒前
沉默完成签到,获得积分10
10秒前
陈丹阳发布了新的文献求助10
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733849
求助须知:如何正确求助?哪些是违规求助? 3278067
关于积分的说明 10006761
捐赠科研通 2994206
什么是DOI,文献DOI怎么找? 1642969
邀请新用户注册赠送积分活动 780752
科研通“疑难数据库(出版商)”最低求助积分说明 749006