Deployment of Artificial Intelligence Models on Edge Devices: A Tutorial Brief

计算机科学 人工神经网络 软件部署 边缘设备 过程(计算) 边缘计算 计算机体系结构 GSM演进的增强数据速率 人工智能 深度学习 人工智能应用 数字电子学 计算机工程 分布式计算 电子线路 电气工程 工程类 云计算 操作系统
作者
Marek Żyliński,Amir Nassibi,Ildar Rakhmatulin,Adil Malik,Christos Papavassiliou,Danilo P. Mandic
出处
期刊:IEEE Transactions on Circuits and Systems Ii-express Briefs [Institute of Electrical and Electronics Engineers]
卷期号:71 (3): 1738-1743 被引量:3
标识
DOI:10.1109/tcsii.2023.3336831
摘要

Artificial intelligence (AI) on an edge device has enormous potential, including advanced signal filtering, event detection, optimization in communications and data compression, improving device performance, advanced on-chip process control, and enhancing energy efficiency. In this tutorial, we provide a brief overview of AI deployment on edge devices, and describe the process of building and deploying a neural network model on a digital edge device. The primary challenge when deploying an AI model in circuits is to fit the model within the constraints of the limited resources as the restricted memory capacity on IoT circuits and the finite computational power impose constraints on the utilization of deep neural networks on IoT. We address this issue by elucidating methods for optimizing neural network models. Part of the tutorial also covers the deployment of deep neural network on logic circuits, as significantly enhanced computational speed can be attained by transitioning the AI paradigm from neural networks to learning automata algorithms. This shift involves a move from arithmetic-based calculations to logic-based approaches. This transformation facilitates the deployment of AI onto Field-Programmable Gate Arrays (FPGAs). The last part of the tutorial covers the emerging topic of in-memory computation of the multiply-accumulate operation. Transferring computations to analog memories has the potential to improve speed and energy efficiency compared to digital architectures, potentially achieving improvements of several orders of magnitude. It is our hope that this tutorial will assist researchers and engineers to integrate AI models on edge devices, facilitating rapid and reliable implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑熊安巴尼完成签到,获得积分20
1秒前
3秒前
yiyiyi完成签到 ,获得积分10
4秒前
4秒前
桐桐应助尼古拉斯二狗蛋采纳,获得10
4秒前
Zezezee完成签到,获得积分10
5秒前
将离发布了新的文献求助10
5秒前
调研昵称发布了新的文献求助10
6秒前
kingmin应助yijiubingshi采纳,获得10
6秒前
6秒前
7秒前
hxn完成签到,获得积分10
7秒前
奋斗尔安完成签到,获得积分10
7秒前
沙拉发布了新的文献求助10
8秒前
hajy完成签到 ,获得积分10
8秒前
单纯寒凝发布了新的文献求助10
8秒前
8秒前
junzilan发布了新的文献求助10
8秒前
田様应助卡卡采纳,获得10
9秒前
Zezezee发布了新的文献求助10
11秒前
复杂的问玉完成签到,获得积分20
12秒前
13秒前
13秒前
睡睡完成签到,获得积分10
13秒前
14秒前
15秒前
所所应助饕餮采纳,获得10
15秒前
平淡小凝发布了新的文献求助10
15秒前
nihaoxiaoai完成签到,获得积分10
16秒前
完美世界应助英俊的汉堡采纳,获得10
16秒前
爱静静应助hehe采纳,获得10
17秒前
九城发布了新的文献求助20
17秒前
斯文败类应助高君奇采纳,获得10
17秒前
小二郎应助特兰克斯采纳,获得10
17秒前
mojomars发布了新的文献求助10
17秒前
吃嘛嘛香完成签到,获得积分10
17秒前
wqy发布了新的文献求助10
18秒前
天天快乐应助新的心跳采纳,获得10
18秒前
Orange应助有益采纳,获得10
18秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808