重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Ordinal Pattern Tree: A New Representation Method for Brain Network Analysis

序数回归 计算机科学 杠杆(统计) 模式识别(心理学) 人工智能 核(代数) 功率图分析 图形 代表(政治) 成对比较 数据挖掘 数学 机器学习 理论计算机科学 组合数学 政治 政治学 法学
作者
Kai Ma,Xuyun Wen,Qi Zhu,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1526-1538 被引量:1
标识
DOI:10.1109/tmi.2023.3342047
摘要

Brain networks, describing the functional or structural interactions of brain with graph theory, have been widely used for brain imaging analysis. Currently, several network representation methods have been developed for describing and analyzing brain networks. However, most of these methods ignored the valuable weighted information of the edges in brain networks. In this paper, we propose a new representation method (i.e., ordinal pattern tree) for brain network analysis. Compared with the existing network representation methods, the proposed ordinal pattern tree (OPT) can not only leverage the weighted information of the edges but also express the hierarchical relationships of nodes in brain networks. On OPT, nodes are connected by ordinal edges which are constructed by using the ordinal pattern relationships of weighted edges. We represent brain networks as OPTs and further develop a new graph kernel called optimal transport (OT) based ordinal pattern tree (OT-OPT) kernel to measure the similarity between paired brain networks. In OT-OPT kernel, the OT distances are used to calculate the transport costs between the nodes on the OPTs. Based on these OT distances, we use exponential function to calculate OT-OPT kernel which is proved to be positive definite. To evaluate the effectiveness of the proposed method, we perform classification and regression experiments on ADHD-200, ABIDE and ADNI datasets. The experimental results demonstrate that our proposed method outperforms the state-of-the-art graph methods in the classification and regression tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
懒虫儿坤发布了新的文献求助10
刚刚
苗条桐发布了新的文献求助10
刚刚
刚刚
1秒前
qin完成签到,获得积分10
1秒前
英姑应助花开米兰城采纳,获得10
1秒前
WA发布了新的文献求助10
1秒前
FN_09发布了新的文献求助10
2秒前
3秒前
3秒前
Hello应助cat采纳,获得10
3秒前
3秒前
mmol发布了新的文献求助10
3秒前
HCCha发布了新的文献求助10
4秒前
dalian发布了新的文献求助10
4秒前
tp发布了新的文献求助10
4秒前
4秒前
XH完成签到,获得积分10
5秒前
5秒前
5秒前
蚊蚊爱读书应助quasar采纳,获得10
5秒前
无限行之完成签到,获得积分10
6秒前
lxy发布了新的文献求助10
6秒前
KevenDing完成签到,获得积分10
6秒前
浮游应助薛晓博采纳,获得10
7秒前
7秒前
星辰大海应助4123采纳,获得10
7秒前
Owen应助4123采纳,获得10
7秒前
传奇3应助4123采纳,获得10
7秒前
小马甲应助4123采纳,获得10
7秒前
8秒前
睡个大觉应助知足肠乐采纳,获得10
8秒前
锣大炮发布了新的文献求助10
8秒前
友好的凝旋完成签到,获得积分10
8秒前
椰子完成签到,获得积分20
9秒前
华仔应助dalian采纳,获得10
9秒前
庄建煌完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466380
求助须知:如何正确求助?哪些是违规求助? 4570254
关于积分的说明 14324125
捐赠科研通 4496749
什么是DOI,文献DOI怎么找? 2463571
邀请新用户注册赠送积分活动 1452461
关于科研通互助平台的介绍 1427543