已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Current Status and Future Trends of Meter-Level Indoor Positioning Technology: A Review

计算机科学 定位技术 全球定位系统 数据科学 系统工程 电信 实时计算 工程类
作者
Lin Qi,Yu Liu,Yue Yu,Liang Chen,Ruizhi Chen
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (2): 398-398 被引量:9
标识
DOI:10.3390/rs16020398
摘要

High-precision indoor positioning technology is regarded as one of the core components of artificial intelligence (AI) and Internet of Things (IoT) applications. Over the past decades, society has observed a burgeoning demand for indoor location-based services (iLBSs). Concurrently, ongoing technological innovations have been instrumental in establishing more accurate, particularly meter-level indoor positioning systems. In scenarios where the penetration of satellite signals indoors proves problematic, research efforts focused on high-precision intelligent indoor positioning technology have seen a substantial increase. Consequently, a stable assortment of location sources and their respective positioning methods have emerged, characterizing modern technological resilience. This academic composition serves to illuminate the current status of meter-level indoor positioning technologies. An in-depth overview is provided in this paper, segmenting these technologies into distinct types based on specific positioning principles such as geometric relationships, fingerprint matching, incremental estimation, and quantum navigation. The purpose and principles underlying each method are elucidated, followed by a rigorous examination and analysis of their respective technological strides. Subsequently, we encapsulate the unique attributes and strengths of high-precision indoor positioning technology in a concise summary. This thorough investigation aspires to be a catalyst in the progression and refinement of indoor positioning technologies. Lastly, we broach prospective trends, including diversification, intelligence, and popularization, and we speculate on a bright future ripe with opportunities for these technological innovations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助3268590946采纳,获得10
1秒前
充电宝应助hyhyhyhy采纳,获得10
1秒前
1秒前
1秒前
qi7发布了新的文献求助10
1秒前
2秒前
FashionBoy应助古美路德赫亚采纳,获得10
3秒前
3秒前
youlico发布了新的文献求助30
3秒前
震动的平松完成签到 ,获得积分10
5秒前
7秒前
凡仔完成签到,获得积分20
7秒前
7秒前
刘思琪发布了新的文献求助10
8秒前
稳重火龙果完成签到,获得积分20
8秒前
好的发布了新的文献求助10
8秒前
8秒前
领导范儿应助qi7采纳,获得10
10秒前
10秒前
SciGPT应助小童老婆采纳,获得10
11秒前
蔚111完成签到 ,获得积分10
16秒前
欣慰的以蕊完成签到,获得积分10
17秒前
19秒前
youlico完成签到,获得积分10
19秒前
今后应助复杂的板栗采纳,获得10
20秒前
围着那只小兔转完成签到 ,获得积分10
20秒前
20秒前
陆白衣完成签到,获得积分10
24秒前
思源应助hyhyhyhy采纳,获得10
24秒前
Misaki发布了新的文献求助10
25秒前
倪倪发布了新的文献求助20
26秒前
DrChan完成签到,获得积分10
29秒前
29秒前
称心太阳发布了新的文献求助10
31秒前
31秒前
华仔应助fisker采纳,获得10
32秒前
lwxhappy完成签到 ,获得积分20
33秒前
33秒前
火翟丰丰山心完成签到 ,获得积分10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353128
求助须知:如何正确求助?哪些是违规求助? 2977922
关于积分的说明 8682793
捐赠科研通 2659144
什么是DOI,文献DOI怎么找? 1456067
科研通“疑难数据库(出版商)”最低求助积分说明 674242
邀请新用户注册赠送积分活动 664950