Empowerment of Artificial Intelligence in Teaching Reform of Ideological and Political Courses in Universities

意识形态 授权 政治 数学教育 政治学 教育学 心理学 社会学 法学
作者
Han Yang
出处
期刊:Journal of contemporary educational research [Bio-Byword Scientific Publishing, Pty. Ltd.]
卷期号:8 (1): 80-87 被引量:4
标识
DOI:10.26689/jcer.v8i1.5976
摘要

The rapid development of artificial intelligence (AI) technology has brought new opportunities and challenges to the field of education. As an important link in cultivating students’ comprehensive quality and socialist core values, it is necessary to carry out continuous teaching reform and innovation in ideological and political courses in colleges and universities. Based on the concept of AI empowering the teaching reform of ideological and political courses, this study aims to explore how to use artificial intelligence technology to improve the teaching effect and learning experience of ideological and political courses. The research first analyzes the application status of artificial intelligence technology in education, and then discusses the application potential of artificial intelligence in ideological and political courses. Subsequently, the teaching reform strategy of ideological and political courses based on artificial intelligence is proposed, including the use of virtual reality technology, the application of intelligent auxiliary teaching tools to enhance personalized teaching, and the construction of an intelligent learning management system. Lastly, a case analysis is conducted to explore the implementation effect of the teaching reform of ideological and political courses in universities. The results showed that the application of artificial intelligence technology can effectively improve the teaching effect and learning experience of ideological and political courses, and provide new ideas and methods for the teaching reform of ideological and political courses in universities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nkdailingyun发布了新的文献求助10
2秒前
嘉心糖应助玮玮采纳,获得30
2秒前
李健应助杨哈哈采纳,获得10
3秒前
tt_学术人完成签到,获得积分10
3秒前
小鹿完成签到,获得积分10
4秒前
4秒前
AlexDu发布了新的文献求助30
5秒前
5秒前
JUICCY完成签到,获得积分20
6秒前
6秒前
7秒前
瓜瓜完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
潇洒冬瓜完成签到,获得积分10
13秒前
14秒前
18秒前
传奇3应助淡淡的小蜜蜂采纳,获得10
19秒前
19秒前
科研通AI2S应助专注的月亮采纳,获得10
20秒前
21秒前
是否完成签到,获得积分10
22秒前
悦耳凡柔完成签到,获得积分20
27秒前
27秒前
无限的猕猴桃完成签到,获得积分10
30秒前
ding应助尛瞐慶成采纳,获得10
31秒前
junze完成签到,获得积分10
32秒前
33秒前
34秒前
38秒前
Bo完成签到,获得积分20
39秒前
bjyx完成签到,获得积分10
40秒前
yyang发布了新的文献求助10
40秒前
41秒前
Bo发布了新的文献求助10
43秒前
45秒前
pptt完成签到,获得积分10
45秒前
yudandan@CJLU发布了新的文献求助10
47秒前
CipherSage应助美好斓采纳,获得10
47秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314113
求助须知:如何正确求助?哪些是违规求助? 2946546
关于积分的说明 8530432
捐赠科研通 2622170
什么是DOI,文献DOI怎么找? 1434347
科研通“疑难数据库(出版商)”最低求助积分说明 665268
邀请新用户注册赠送积分活动 650832