YOLOv7-DCN-SORT: An algorithm for detecting and counting targets on Acetes fishing vessel operation

垂钓 分类 计算机科学 渔业 算法 人工智能 生物 数据库
作者
Yueying Sun,Shengmao Zhang,Yongchuang Shi,Fenghua Tang,Junlin Chen,Ying Xiong,Yang Dai,Li Lin
出处
期刊:Fisheries Research [Elsevier]
卷期号:274: 106983-106983 被引量:3
标识
DOI:10.1016/j.fishres.2024.106983
摘要

The quantification of fishing information on fishing vessels is a prerequisite for implementing refined management of quota-based fishing. In order to address the target detection and information quantification issues in the quota-based fishing of Acetes chinensis, this study installed an Electronic Monitoring (EM) system on Acetes chinensis fishing vessels. Using the EM system video as a data source. Based on YOLOv7, an improved object detection algorithm (YOLOv7-DCN) is proposed. Additionally, drawing on the main ideas of the SORT algorithm, a target counting algorithm is also proposed (YOLOv7-DCN-SORT). YOLOv7-DCN object detection algorithm uses DCNv2 as the backbone network to detect the main targets in fishing vessel operations, improving the network's ability to detect deformable targets. The YOLOv7-DCN-SORT target counting algorithm utilizes the YOLOv7-DCN obtained in the detection phase as the target detection model. It applies the Kalman filter and Hungarian algorithm from the SORT algorithm to track and predict the counted targets. By setting collision detection lines, timestamps, thresholds, and counters, this algorithm can accurately count the number of baskets filled with Acetes chinensis and the number of nets deployed during fishing operations. The results show that: 1) The improved YOLOv7-DCN achieved precision, recall, mAP, and F1-score of 98.21%, 98.43%, 99.19%, and 98.33%, respectively, for each target detection category on the test set. These values represent improvements of 2.06%, 0.64%, 0.08%, and 1.37% compared to the original YOLOv7 model. 2) The YOLOv7-DCN-SORT algorithm achieved counting accuracy rates of 82.00% for counting the number of Acetes chinensis baskets and 96.61% for the number of deployed nets. In summary, this study provides methods for automated recording and intelligent information processing in operations on offshore fishing vessels, serving as a reference for quota-based fishing management decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
harley完成签到,获得积分10
1秒前
王果果发布了新的文献求助10
1秒前
Steven发布了新的文献求助10
4秒前
qiaoxixi发布了新的文献求助10
5秒前
8秒前
心静如水发布了新的文献求助10
10秒前
qiaoxixi完成签到,获得积分10
17秒前
28秒前
28秒前
jgs发布了新的文献求助10
33秒前
希望天下0贩的0应助liulu采纳,获得10
33秒前
caohai发布了新的文献求助30
33秒前
38秒前
追梦人2016完成签到 ,获得积分10
40秒前
华仔应助含糊的灵雁采纳,获得10
42秒前
47秒前
李健应助XIAO采纳,获得10
47秒前
yu完成签到,获得积分10
47秒前
julie发布了新的文献求助10
53秒前
小蘑菇应助lyx1997采纳,获得10
54秒前
56秒前
56秒前
快乐的花果山完成签到 ,获得积分0
59秒前
1分钟前
1分钟前
orixero应助心静如水采纳,获得10
1分钟前
J.发布了新的文献求助10
1分钟前
DG160发布了新的文献求助10
1分钟前
和谐的小懒猪完成签到 ,获得积分10
1分钟前
1分钟前
拉长的南松完成签到 ,获得积分10
1分钟前
XIAO发布了新的文献求助10
1分钟前
J.完成签到,获得积分10
1分钟前
1分钟前
Rain应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
5Cu发布了新的文献求助10
1分钟前
ttt发布了新的文献求助10
1分钟前
xiaoshuwang完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374164
求助须知:如何正确求助?哪些是违规求助? 2991213
关于积分的说明 8744276
捐赠科研通 2674885
什么是DOI,文献DOI怎么找? 1465388
科研通“疑难数据库(出版商)”最低求助积分说明 677841
邀请新用户注册赠送积分活动 669411