Utilizing artificial intelligence to support analyzing self-regulated learning: A preliminary mixed-methods evaluation from a human-centered perspective

元认知 认知 人工智能 计算机科学 分类器(UML) 机器学习 心理学 神经科学
作者
Chia-Yu Wang,John J. H. Lin
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:144: 107721-107721 被引量:12
标识
DOI:10.1016/j.chb.2023.107721
摘要

Analyzing the self-regulatory process of complex science learning is a serious challenge as it takes considerable time to train coders and do real-time assessment of a learner's verbatim transcript. Thus, the aim of this study was to investigate the potential and opportunities of artificial intelligence (AI) methods to analyze self-reporting protocols for recognizing cognitive and metacognitive strategies of self-regulated learning. Sixty-six participants were recruited to evaluate the quality of given scientific explanations while self-reporting their interpreting and reasoning processes. The self-reported protocols were further coded and categorized as cognitive or metacognitive activities for training and evaluating an AI model. Long Short-Term Memory, an AI classifier, was employed to predict the rich narrative texts expressed by learners on using strategies in complex science tasks. Quantitative analysis was conducted to evaluate the performance of the classifier. Results suggested promising accuracy/consistency between human-based and the AI classifier. In addition, two design factors, AI structure and dropout rate, did not significantly impact the performance. Qualitative examinations of discrepancies between human and AI classifier revealed that length of segments and segments including a phrase or words with temporal cues could potentially influence the accuracy of AI judgments. Overall, The AI classifier yielded a fair performance demonstrating acceptable accuracy in the prediction of cognitive or metacognitive strategies with a limited dataset for a total of merely 104 protocols from 66 participants. Our qualitative observations that attempt to explain sources of human-computer discrepancies may shed light on future improvement for AI-based methods. Implications of AI for self-regulated digital learning are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
1秒前
1秒前
frankk发布了新的文献求助10
1秒前
1秒前
encounter发布了新的文献求助10
1秒前
Emma发布了新的文献求助10
2秒前
科研通AI2S应助JIANYOUFU采纳,获得10
2秒前
冬柳发布了新的文献求助10
3秒前
deniroming完成签到,获得积分10
3秒前
包包包完成签到,获得积分20
3秒前
思源应助987采纳,获得10
4秒前
酷波er应助wzwer123采纳,获得10
4秒前
frank发布了新的文献求助10
4秒前
情怀应助ZW采纳,获得10
5秒前
bkagyin应助啊哈采纳,获得10
5秒前
wang发布了新的文献求助10
5秒前
拼搏的败发布了新的文献求助10
5秒前
6秒前
Orange应助JIANYOUFU采纳,获得10
7秒前
初见完成签到 ,获得积分10
8秒前
9秒前
9秒前
灵巧秋蝶完成签到 ,获得积分10
10秒前
爆米花应助hbc采纳,获得10
10秒前
大个应助奥特曼采纳,获得10
10秒前
结实易云完成签到,获得积分10
10秒前
Orange应助DCVMIO采纳,获得10
10秒前
11秒前
11秒前
高手中的糕手完成签到,获得积分10
11秒前
星辰大海应助上河采纳,获得10
12秒前
12秒前
Morpheus发布了新的文献求助10
12秒前
12秒前
13秒前
taowang完成签到,获得积分10
13秒前
14秒前
15秒前
CLL发布了新的文献求助10
15秒前
打打应助陈某人采纳,获得10
15秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410794
求助须知:如何正确求助?哪些是违规求助? 3014348
关于积分的说明 8862922
捐赠科研通 2701746
什么是DOI,文献DOI怎么找? 1481239
科研通“疑难数据库(出版商)”最低求助积分说明 684750
邀请新用户注册赠送积分活动 679247