已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new efficient method for solving the multiple ellipse detection problem

椭圆 马氏距离 分拆(数论) 算法 计算机科学 数学 点(几何) 星团(航天器) 人工智能 组合数学 几何学 程序设计语言
作者
Rudolf Scitovski,Kristian Sabo,Patrick Nikić,Snježana Majstorović
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:222: 119853-119853 被引量:4
标识
DOI:10.1016/j.eswa.2023.119853
摘要

In this paper, we consider the multiple ellipse detection problem based on data points coming from a number of ellipses in the plane not known in advance. In so doing, data points are usually contaminated with some noisy errors. In this paper, the multiple ellipse detection problem is solved as a center-based problem from cluster analysis. Therefore, an ellipse is considered a Mahalanobis circle. In this way, we easily determine a distance from a point to the ellipse and also an ellipse as the cluster center. In the case when the number of ellipses is known in advance, an optimal partition is searched for on the basis of the k-means algorithm that is modified for this case. Hence, a good initial approximation for M-circle-centers is searched for as unit circles with the application of a few iterations of the well-known DIRECT algorithm for global optimization. In the case when the number of ellipses is not known in advance, optimal partitions with 1,2,… clusters for the case when cluster-centers are ellipses are determined by using an incremental algorithm. Among them, the partition with the most appropriate number of clusters is selected. For that purpose, a new Geometrical Objects-index (GO-index) is defined. Numerous test-examples point to high efficiency of the proposed method. Many algorithms can be found in the literature that recognize ellipses with clear edges well, but that do not recognize ellipses with unclear or noisy edges. On the other hand, our algorithm is specifically used for recognition of ellipses with unclear or noisy edges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助极夜采纳,获得30
刚刚
周雨婷完成签到,获得积分20
1秒前
1秒前
3秒前
3秒前
俄而完成签到,获得积分10
4秒前
大模型应助未来的闫院士采纳,获得10
4秒前
Kannan发布了新的文献求助10
4秒前
由大发布了新的文献求助10
4秒前
charlene发布了新的文献求助10
4秒前
5秒前
7秒前
qogir发布了新的文献求助10
7秒前
8秒前
我要啃木头完成签到,获得积分10
9秒前
9秒前
周雨婷发布了新的文献求助20
9秒前
Ava应助Cassiel采纳,获得30
10秒前
lvzhechen发布了新的文献求助10
11秒前
轻松的芯完成签到 ,获得积分10
12秒前
sun发布了新的文献求助10
12秒前
九柒发布了新的文献求助10
12秒前
马亚飞发布了新的文献求助10
12秒前
白酒发布了新的文献求助10
15秒前
17秒前
Hale完成签到,获得积分0
17秒前
英姑应助九柒采纳,获得10
18秒前
qsw发布了新的文献求助10
18秒前
领导范儿应助wang采纳,获得10
19秒前
21秒前
科目三应助麦田稻草人采纳,获得10
22秒前
genomed完成签到,获得积分0
22秒前
KEYANMINGONG完成签到,获得积分10
23秒前
24秒前
萌新完成签到,获得积分10
25秒前
26秒前
28秒前
KEYANMINGONG发布了新的文献求助10
28秒前
29秒前
研友_Lw7MKL发布了新的文献求助10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526225
求助须知:如何正确求助?哪些是违规求助? 3106551
关于积分的说明 9280993
捐赠科研通 2804174
什么是DOI,文献DOI怎么找? 1539306
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709495