亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new efficient method for solving the multiple ellipse detection problem

椭圆 马氏距离 分拆(数论) 算法 计算机科学 数学 点(几何) 星团(航天器) 人工智能 组合数学 几何学 程序设计语言
作者
Rudolf Scitovski,Kristian Sabo,Patrick Nikić,Snježana Majstorović
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:222: 119853-119853 被引量:12
标识
DOI:10.1016/j.eswa.2023.119853
摘要

In this paper, we consider the multiple ellipse detection problem based on data points coming from a number of ellipses in the plane not known in advance. In so doing, data points are usually contaminated with some noisy errors. In this paper, the multiple ellipse detection problem is solved as a center-based problem from cluster analysis. Therefore, an ellipse is considered a Mahalanobis circle. In this way, we easily determine a distance from a point to the ellipse and also an ellipse as the cluster center. In the case when the number of ellipses is known in advance, an optimal partition is searched for on the basis of the k-means algorithm that is modified for this case. Hence, a good initial approximation for M-circle-centers is searched for as unit circles with the application of a few iterations of the well-known DIRECT algorithm for global optimization. In the case when the number of ellipses is not known in advance, optimal partitions with 1,2,… clusters for the case when cluster-centers are ellipses are determined by using an incremental algorithm. Among them, the partition with the most appropriate number of clusters is selected. For that purpose, a new Geometrical Objects-index (GO-index) is defined. Numerous test-examples point to high efficiency of the proposed method. Many algorithms can be found in the literature that recognize ellipses with clear edges well, but that do not recognize ellipses with unclear or noisy edges. On the other hand, our algorithm is specifically used for recognition of ellipses with unclear or noisy edges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
Edibletrio完成签到,获得积分20
17秒前
Edibletrio关注了科研通微信公众号
28秒前
book完成签到 ,获得积分10
29秒前
zwang688完成签到,获得积分10
36秒前
热情的c99发布了新的文献求助30
39秒前
42秒前
英俊的觅露完成签到,获得积分10
45秒前
45秒前
45秒前
47秒前
cowmoon发布了新的文献求助10
49秒前
明理瑾瑜发布了新的文献求助10
51秒前
小小的飞机完成签到,获得积分10
51秒前
王旭阳完成签到,获得积分10
54秒前
科研狗的春天完成签到 ,获得积分10
58秒前
酷波er应助明理瑾瑜采纳,获得10
1分钟前
儒雅的十八完成签到,获得积分10
1分钟前
1分钟前
1分钟前
明亮的老四完成签到 ,获得积分10
1分钟前
李健的小迷弟应助Grinde采纳,获得10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
TEMPO发布了新的文献求助10
1分钟前
NexusExplorer应助霸气乐菱采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
合一海盗完成签到,获得积分10
1分钟前
Worenxian完成签到 ,获得积分10
1分钟前
汉堡包应助老鼠耗子采纳,获得10
1分钟前
1分钟前
Yu完成签到 ,获得积分10
1分钟前
赞zan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
嘟嘟嘟嘟发布了新的文献求助10
1分钟前
Grinde发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714334
求助须知:如何正确求助?哪些是违规求助? 5222944
关于积分的说明 15273149
捐赠科研通 4865786
什么是DOI,文献DOI怎么找? 2612363
邀请新用户注册赠送积分活动 1562482
关于科研通互助平台的介绍 1519740