亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MaNIACS : Approximate Mining of Frequent Subgraph Patterns through Sampling

修剪 计算机科学 概率逻辑 线性子空间 钥匙(锁) 采样(信号处理) 图形 顶点(图论) 算法 维数(图论) 模式识别(心理学) 人工智能 理论计算机科学 数学 组合数学 滤波器(信号处理) 几何学 计算机安全 农学 计算机视觉 生物
作者
Giulia Preti,Gianmarco De Francisci Morales,Matteo Riondato
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:14 (3): 1-29 被引量:11
标识
DOI:10.1145/3587254
摘要

We present MaNIACS , a sampling-based randomized algorithm for computing high-quality approximations of the collection of the subgraph patterns that are frequent in a single, large, vertex-labeled graph, according to the Minimum Node Image-based (MNI) frequency measure. The output of MaNIACS comes with strong probabilistic guarantees, obtained by using the empirical Vapnik–Chervonenkis (VC) dimension, a key concept from statistical learning theory, together with strong probabilistic tail bounds on the difference between the frequency of a pattern in the sample and its exact frequency. MaNIACS leverages properties of the MNI-frequency to aggressively prune the pattern search space, and thus to reduce the time spent in exploring subspaces that contain no frequent patterns. In turn, this pruning leads to better bounds to the maximum frequency estimation error, which leads to increased pruning, resulting in a beneficial feedback effect. The results of our experimental evaluation of MaNIACS on real graphs show that it returns high-quality collections of frequent patterns in large graphs up to two orders of magnitude faster than the exact algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
nanne发布了新的文献求助30
刚刚
lulumomoxixi完成签到 ,获得积分10
1秒前
光合作用完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
豆都发布了新的文献求助10
6秒前
务实书包完成签到,获得积分10
6秒前
徐志豪发布了新的文献求助10
8秒前
zorro3574发布了新的文献求助10
9秒前
14秒前
zorro3574完成签到,获得积分10
17秒前
木有完成签到 ,获得积分10
18秒前
20秒前
爆米花应助豆都采纳,获得10
21秒前
23秒前
maoaq完成签到 ,获得积分10
26秒前
28秒前
21145077发布了新的文献求助10
33秒前
35秒前
36秒前
babao发布了新的文献求助30
38秒前
无题完成签到,获得积分10
41秒前
41秒前
研友_VZG7GZ应助青柠采纳,获得10
45秒前
babao完成签到,获得积分20
47秒前
Mmmmmmm发布了新的文献求助30
47秒前
50秒前
56秒前
DD完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
我是老大应助李桂芳采纳,获得10
1分钟前
浮浮世世应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得20
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490