A novel spectrogram visual security encryption algorithm based on block compressed sensing and five-dimensional chaotic system

算法 混乱的 加密 计算机科学 熵(时间箭头) 光谱图 理论计算机科学 计算机视觉 人工智能 量子力学 操作系统 物理
作者
Fabao Yan,Yupeng Shen,Tao Zou,Zhao Wu,Yanrui Su
出处
期刊:Nonlinear Dynamics [Springer Nature]
卷期号:111 (10): 9607-9628 被引量:5
标识
DOI:10.1007/s11071-023-08317-w
摘要

Based on block compressed sensing theory, combined with a five-dimensional chaotic system, we propose and analyze a novel spectrogram visual security encryption algorithm. This research is devoted to solving the compression, encryption and steganography problems of spectrograms involving large data volumes and high complexity. First, the discrete wavelet transform is applied to the spectrogram to generate the coefficient matrix. Then, block compressed sensing is applied to compress and preencrypt the spectrogram. Second, we design a new five-dimensional chaotic system. Then, several typical evaluation methods, such as the phase diagram, Lyapunov exponent, bifurcation diagram and sample entropy, are applied to deeply analyze the chaotic behavior and dynamic performance of the system. Moreover, the corresponding Simulink model has been built, which proves the realizability of the chaotic system. Importantly, the measurement matrix required for compressed sensing is constructed by the chaotic sequence. Third, dynamic Josephus scrambling and annular diffusion are performed on the secret image to obtain the cipher image. Finally, an improved least significant bit embedding method and alpha channel synchronous embedding are designed to obtain a steganographic image with visual security properties. To make the initial keys of each image completely different from other images, the required keys are produced using the SHA-256 algorithm. The experimental results confirm that the visual security cryptosystem designed in this study has better compression performance, visual security and reconstruction quality. Furthermore, it is able to effectively defend against a variety of conventional attack methods, such as statistical attacks and entropy attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助xiu采纳,获得10
刚刚
1秒前
2秒前
William鉴哲完成签到,获得积分10
2秒前
神奇科研圆完成签到,获得积分10
2秒前
2秒前
biomds完成签到,获得积分10
2秒前
2秒前
3秒前
乐乐应助huifang采纳,获得10
3秒前
范范发布了新的文献求助10
4秒前
倩迷谜完成签到,获得积分0
5秒前
5秒前
酷酷的紫南完成签到 ,获得积分10
6秒前
迷人凡旋完成签到,获得积分20
6秒前
JamesPei应助大李包采纳,获得10
6秒前
6秒前
天涯完成签到 ,获得积分10
7秒前
shr完成签到,获得积分10
7秒前
落后以旋完成签到,获得积分10
7秒前
小二郎应助缚大哥采纳,获得10
7秒前
充电宝应助青木蓝采纳,获得10
8秒前
云中渊发布了新的文献求助10
8秒前
冷静的毛豆完成签到,获得积分10
8秒前
涵Allen完成签到 ,获得积分10
8秒前
思源应助wzxxxx采纳,获得10
8秒前
隐形曼青应助shelly0621采纳,获得10
9秒前
无敌鱼发布了新的文献求助10
9秒前
10秒前
meimei完成签到,获得积分10
10秒前
朴实的薯片完成签到,获得积分10
11秒前
way完成签到,获得积分10
12秒前
脑洞疼应助Chan0501采纳,获得10
13秒前
fancy完成签到 ,获得积分10
13秒前
Maglev发布了新的文献求助10
14秒前
14秒前
含糊的代丝完成签到 ,获得积分10
14秒前
14秒前
15秒前
小九发布了新的文献求助20
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794