Adsorption Process of Various Antimicrobial Peptides on Different Surfaces of Cellulose

马加宁 纤维素 吸附 抗菌肽 范德瓦尔斯力 细菌纤维素 化学 分子动力学 抗菌剂 组合化学 氢键 有机化学 化学工程 分子 立体化学 计算化学 生物化学 工程类
作者
Aliyeh Mehranfar,Mohammad Khavani,Mohammad R. K. Mofrad
出处
期刊:ACS applied bio materials [American Chemical Society]
卷期号:6 (3): 1041-1053 被引量:2
标识
DOI:10.1021/acsabm.2c00905
摘要

Current antimicrobial challenges in hospitals, pharmaceutical production units, and food packaging have motivated the development of antimicrobial agents, among them the antimicrobial compounds based on cellulose and peptides. Herein, we develop molecular dynamics (MD) models to dissect and characterize the adsorption process of antimicrobial peptides (AMPs) such as protegrin 1, magainin 2, and cyclic indolicidin on various surfaces of cellulose including [-1-10], [1-10], [-100], [100], [-110], and [110]. Our results suggest that the magainin 2 antimicrobial peptide loses most of its initial helix form, spreads on the cellulose surface, and makes the most rigid structure with [110] surface. The cyclic indolicidin peptide has the lowest affinity to adsorb on the cellulose surfaces, and the protegrin 1 peptide successfully adsorbs on all the proposed cellulose surfaces. Our MD simulations confirmed that cellulose can improve the corresponding peptides' structural stability and change their secondary structures during adsorption. The [-1-10] and [100] surfaces of cellulose show considerable affinity against the AMPs, exhibiting greater interactions with and adsorption to the peptides. Our data imply that the stronger adsorptions are caused by a set of H-bonds, van der Waals, and electrostatic interactions, where van der Waals interactions play a prominent role in the stability of the AMP-cellulose structures. Our energy analysis results suggest that glutamic acid and arginine amino acids have key roles in the stability of AMPs on cellulose surfaces due largely to stronger interactions with the cellulose surfaces as compared with other residues. Our results can provide useful insight at the molecular level that can help design better antimicrobial biomaterials based on cellulose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气谷蕊完成签到 ,获得积分10
2秒前
羊羊羊完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI5应助WNL采纳,获得10
3秒前
Xuu完成签到,获得积分10
3秒前
外向的沅发布了新的文献求助10
3秒前
徐慕源发布了新的文献求助10
3秒前
夏哈哈完成签到 ,获得积分10
4秒前
默默海露完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
迷路安阳发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助Jolene66采纳,获得10
6秒前
医路有你完成签到,获得积分10
6秒前
7秒前
科研通AI5应助Sean采纳,获得10
7秒前
7秒前
超帅连虎完成签到,获得积分10
7秒前
皓月千里发布了新的文献求助10
7秒前
Grayball应助包容的剑采纳,获得10
7秒前
深情安青应助寒冷书竹采纳,获得10
8秒前
wbj0722完成签到,获得积分10
8秒前
JIAO完成签到,获得积分10
8秒前
8秒前
9秒前
852应助HopeStar采纳,获得10
9秒前
圆圆发布了新的文献求助30
10秒前
Orange应助Promise采纳,获得10
10秒前
一直发布了新的文献求助20
10秒前
10秒前
11秒前
乐乐应助JonyiCheng采纳,获得10
11秒前
无聊先知发布了新的文献求助10
11秒前
医路有你发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678