A treatment plan optimization method with direct minimization of number of energy jumps for proton arc therapy

计算机科学 数学优化 能量(信号处理) 缩小 能量最小化 算法 数学 化学 统计 计算化学
作者
Gezhi Zhang,Yong Long,Yu-Ting Lin,Ronald C. Chen,Hao Gao
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (8): 085001-085001 被引量:12
标识
DOI:10.1088/1361-6560/acc4a7
摘要

Abstract Objective . The optimization of energy layer distributions is crucial to proton arc therapy: on one hand, a sufficient number of energy layers is needed to ensure the plan quality; on the other hand, an excess number of energy jumps (NEJ) can substantially slow down the treatment delivery. This work will develop a new treatment plan optimization method with direct minimization of (NEJ), which will be shown to outperform state-of-the-art methods in both plan quality and delivery efficiency. Approach . The proposed method jointly optimizes the plan quality and minimizes the NEJ. To minimize NEJ, (1) the proton spots x is summed per energy layer to form the energy vector y ; (2) y is binarized via sigmoid transform into y 1 ; (3) y 1 is multiplied with a predefined energy order vector via dot product into y 2 ; (4) y 2 is filtered through the finite-differencing kernel into y 3 in order to identify NEJ; (5) only the NEJ of y 3 is penalized, while x is optimized for plan quality. The solution algorithm to this new method is based on iterative convex relaxation. Main results . The new method is validated in comparison with state-of-the-art methods called energy sequencing (ES) method and energy matrix (EM) method. In terms of delivery efficiency, the new method had fewer NEJ, less energy switching time, and generally less total delivery time. In terms of plan quality, the new method had smaller optimization objective values, lower normal tissue dose, and generally better target coverage. Significance . We have developed a new treatment plan optimization method with direct minimization of NEJ, and demonstrated that this new method outperformed state-of-the-art methods (ES and EM) in both plan quality and delivery efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助ghtsmile采纳,获得10
1秒前
傻傻的向日葵完成签到,获得积分10
2秒前
科研通AI2S应助sean采纳,获得10
3秒前
852应助土豆丝采纳,获得10
3秒前
3秒前
歪歪踢完成签到 ,获得积分10
4秒前
无尽夏完成签到 ,获得积分10
4秒前
111发布了新的文献求助10
5秒前
5年科研3年毕业完成签到,获得积分10
6秒前
7秒前
7秒前
曲书文完成签到,获得积分10
8秒前
96完成签到 ,获得积分10
8秒前
9秒前
科研通AI2S应助风中浩天采纳,获得10
9秒前
junsizzz完成签到,获得积分10
10秒前
呼噜噜发布了新的文献求助10
11秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
13秒前
不配.应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
xjcy应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
一石二鸟应助科研通管家采纳,获得10
14秒前
xjcy应助科研通管家采纳,获得10
14秒前
Shirley应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
Clover完成签到 ,获得积分10
15秒前
16秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799361
捐赠科研通 2447868
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194