外渗
血脑屏障
埃文斯蓝
病理
灌注
血管周围间隙
薄壁组织
免疫染色
缺血
医学
梗塞
血管
解剖
免疫组织化学
中枢神经系统
内科学
心肌梗塞
作者
Theodosia Georgakopoulou,Anne‐Eva van der Wijk,Ed VanBavel,Erik N.T.P. Bakker
标识
DOI:10.1016/j.mvr.2023.104515
摘要
Microinfarcts result in a transient loss of the blood-brain barrier (BBB) in the ischemic territory. This leads to the extravasation of blood proteins into the brain parenchyma. It is not clear how these proteins are removed. Here we studied the role of perivascular spaces in brain clearance from extravasated blood proteins. Male and female Wistar rats were infused with microspheres of either 15, 25, or 50 μm in diameter (n = 6 rats per group) via the left carotid artery. We infused either 25,000 microspheres of 15 μm, 5500 of 25 μm, or 1000 of 50 μm. One day later, rats were infused with lectin and hypoxyprobe to label perfused blood vessels and hypoxic areas, respectively. Rats were then euthanized and perfusion-fixed. Brains were excised, sectioned, and analyzed using immunostaining and confocal imaging. Microspheres induced a size-dependent increase in ischemic volume per territory, but the cumulative ischemic volume was similar in all groups. The total volumes of ischemia, hypoxia and infarction affected 1-2 % of the left hemisphere. Immunoglobulins (IgG) were present in ischemic brain tissue surrounding lodged microspheres in all groups. In addition, staining for IgG was found in perivascular spaces of blood vessels nearby areas of BBB disruption. About 2/3 of these vessels were arteries, while the remaining 1/3 of these vessels were veins. The subarachnoid space (SAS) of the affected hemisphere stained stronger for IgG than the contralateral hemisphere in all groups: +27 %, +44 % and +27 % respectively. Microspheres of various sizes induce a local loss of BBB integrity, evidenced by parenchymal IgG staining. The presence of IgG in perivascular spaces of both arteries and veins distinct from the ischemic territories suggests that both contribute to the removal of blood proteins. The strong staining for IgG in the SAS of the affected hemisphere suggests that this perivascular route egresses via the CSF. Perivascular spaces therefore play a previously unrecognized role in tissue clearance of fluid and extravasated proteins after BBB disruption induced by microinfarcts.
科研通智能强力驱动
Strongly Powered by AbleSci AI