Medical image fusion based on enhanced three-layer image decomposition and Chameleon swarm algorithm

图像融合 计算机科学 自适应直方图均衡化 算法 图像质量 直方图均衡化 人工智能 图像(数学) 计算机视觉 特征检测(计算机视觉) 噪音(视频) 复合图像滤波器 图像处理
作者
Phu‐Hung Dinh
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104740-104740 被引量:26
标识
DOI:10.1016/j.bspc.2023.104740
摘要

Medical image fusion has brought practical applications in clinical diagnosis. However, image fusion methods still face challenges because of problems with the quality of the input images. Phenomena such as noise or low contrast can appear in the original images, which significantly degrades the quality of the synthesized image. Most current image synthesis algorithms do not thoroughly focus on solving the image quality problem. Therefore, if the input images are noisy or low-contrast, it will significantly affect the resulting image synthesis. This study proposes a new image synthesis method that allows efficient operation even when the input image is noisy or has low contrast. Firstly, we propose a new image enhancement algorithm that focuses on solving the problem of noise or low contrast of the input image. This enhancement algorithm is built based on several methods, such as Contrast-limited adaptive histogram equalization (CLAHE), Block-matching and 3D filtering (BM3D), and Chameleon swarm algorithm (CSA). Next, we introduce a method to decompose the image into three enhanced layers based on the adaptive parameters obtained from the proposed image enhancement method. This image decomposition method is used to decompose the input medical images into high-frequency and low-frequency layers. Finally, high-frequency layers are synthesized based on the CSA method, and low-frequency layers are synthesized based on the sum of the local energy functions using the Prewitt compass operator (SLE_PCO). One hundred eighty medical images, various imaging enhancement methods, and medical image synthesis were used for comparison and evaluation. Experimental results show that our image enhancement method works well with noisy and low-contrast images. Furthermore, our image fusion method gives the best performance when compared with the latest image synthesis methods available today.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
寒冷天亦完成签到,获得积分10
1秒前
爆米花应助柔弱的海莲采纳,获得10
1秒前
1秒前
2秒前
冯宝宝发布了新的文献求助10
2秒前
徐向成发布了新的文献求助30
3秒前
Owen应助11采纳,获得10
3秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
嘿嘿完成签到 ,获得积分10
4秒前
4秒前
4秒前
GUN发布了新的文献求助20
5秒前
欻欻欻完成签到,获得积分10
5秒前
朱荧荧发布了新的文献求助30
7秒前
幽默的储发布了新的文献求助10
7秒前
阿雷发布了新的文献求助10
8秒前
善学以致用应助好的哥采纳,获得10
8秒前
miracle发布了新的文献求助10
8秒前
9秒前
小马甲应助bujiachong采纳,获得10
10秒前
大胆书南发布了新的文献求助10
10秒前
hyh完成签到,获得积分10
10秒前
李健的粉丝团团长应助sjc采纳,获得10
10秒前
11秒前
虚幻靖易完成签到,获得积分10
11秒前
情怀应助醉熏的书易采纳,获得10
11秒前
michael发布了新的文献求助30
11秒前
科研通AI6应助啊棕采纳,获得10
12秒前
丘比特应助iscream采纳,获得10
12秒前
匡秋夕完成签到,获得积分10
12秒前
zjq完成签到,获得积分10
13秒前
科研通AI2S应助墨墨叻采纳,获得10
14秒前
听风完成签到 ,获得积分10
14秒前
糊涂的小鸭子完成签到,获得积分10
15秒前
15秒前
烟花应助miracle采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503