Medical image fusion based on enhanced three-layer image decomposition and Chameleon swarm algorithm

图像融合 计算机科学 自适应直方图均衡化 算法 图像质量 直方图均衡化 人工智能 图像(数学) 计算机视觉 特征检测(计算机视觉) 噪音(视频) 复合图像滤波器 图像处理
作者
Phu‐Hung Dinh
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104740-104740 被引量:26
标识
DOI:10.1016/j.bspc.2023.104740
摘要

Medical image fusion has brought practical applications in clinical diagnosis. However, image fusion methods still face challenges because of problems with the quality of the input images. Phenomena such as noise or low contrast can appear in the original images, which significantly degrades the quality of the synthesized image. Most current image synthesis algorithms do not thoroughly focus on solving the image quality problem. Therefore, if the input images are noisy or low-contrast, it will significantly affect the resulting image synthesis. This study proposes a new image synthesis method that allows efficient operation even when the input image is noisy or has low contrast. Firstly, we propose a new image enhancement algorithm that focuses on solving the problem of noise or low contrast of the input image. This enhancement algorithm is built based on several methods, such as Contrast-limited adaptive histogram equalization (CLAHE), Block-matching and 3D filtering (BM3D), and Chameleon swarm algorithm (CSA). Next, we introduce a method to decompose the image into three enhanced layers based on the adaptive parameters obtained from the proposed image enhancement method. This image decomposition method is used to decompose the input medical images into high-frequency and low-frequency layers. Finally, high-frequency layers are synthesized based on the CSA method, and low-frequency layers are synthesized based on the sum of the local energy functions using the Prewitt compass operator (SLE_PCO). One hundred eighty medical images, various imaging enhancement methods, and medical image synthesis were used for comparison and evaluation. Experimental results show that our image enhancement method works well with noisy and low-contrast images. Furthermore, our image fusion method gives the best performance when compared with the latest image synthesis methods available today.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HYLynn应助hetao286采纳,获得10
1秒前
3秒前
3秒前
夯大力发布了新的文献求助10
3秒前
3秒前
4秒前
自觉沛芹完成签到,获得积分10
4秒前
YukiXu完成签到 ,获得积分10
4秒前
4秒前
桐桐应助SXM采纳,获得10
5秒前
波特卡斯D艾斯完成签到 ,获得积分10
6秒前
852应助排骨炖豆角采纳,获得10
7秒前
7秒前
顾矜应助木子采纳,获得10
7秒前
feng发布了新的文献求助10
7秒前
成就的小熊猫完成签到,获得积分10
8秒前
8秒前
Morgenstern_ZH完成签到,获得积分10
9秒前
hua发布了新的文献求助10
9秒前
_Forelsket_完成签到,获得积分10
9秒前
9秒前
半颗橙子完成签到 ,获得积分10
11秒前
科研通AI5应助zmy采纳,获得10
11秒前
善学以致用应助enoot采纳,获得10
12秒前
JamesPei应助失眠的血茗采纳,获得10
12秒前
青山发布了新的文献求助10
12秒前
亻鱼发布了新的文献求助10
13秒前
脑洞疼应助成就的小熊猫采纳,获得10
13秒前
13秒前
waterclouds完成签到 ,获得积分10
13秒前
圆圈儿完成签到,获得积分10
13秒前
司空剑封完成签到,获得积分10
14秒前
14秒前
海棠yiyi完成签到,获得积分10
14秒前
14秒前
梁小鑫发布了新的文献求助10
14秒前
Jenny应助圈圈采纳,获得10
15秒前
内向青文完成签到,获得积分10
15秒前
lefora完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740