亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Medical image fusion based on enhanced three-layer image decomposition and Chameleon swarm algorithm

图像融合 计算机科学 自适应直方图均衡化 算法 图像质量 直方图均衡化 人工智能 图像(数学) 计算机视觉 特征检测(计算机视觉) 噪音(视频) 复合图像滤波器 图像处理
作者
Phu‐Hung Dinh
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104740-104740 被引量:26
标识
DOI:10.1016/j.bspc.2023.104740
摘要

Medical image fusion has brought practical applications in clinical diagnosis. However, image fusion methods still face challenges because of problems with the quality of the input images. Phenomena such as noise or low contrast can appear in the original images, which significantly degrades the quality of the synthesized image. Most current image synthesis algorithms do not thoroughly focus on solving the image quality problem. Therefore, if the input images are noisy or low-contrast, it will significantly affect the resulting image synthesis. This study proposes a new image synthesis method that allows efficient operation even when the input image is noisy or has low contrast. Firstly, we propose a new image enhancement algorithm that focuses on solving the problem of noise or low contrast of the input image. This enhancement algorithm is built based on several methods, such as Contrast-limited adaptive histogram equalization (CLAHE), Block-matching and 3D filtering (BM3D), and Chameleon swarm algorithm (CSA). Next, we introduce a method to decompose the image into three enhanced layers based on the adaptive parameters obtained from the proposed image enhancement method. This image decomposition method is used to decompose the input medical images into high-frequency and low-frequency layers. Finally, high-frequency layers are synthesized based on the CSA method, and low-frequency layers are synthesized based on the sum of the local energy functions using the Prewitt compass operator (SLE_PCO). One hundred eighty medical images, various imaging enhancement methods, and medical image synthesis were used for comparison and evaluation. Experimental results show that our image enhancement method works well with noisy and low-contrast images. Furthermore, our image fusion method gives the best performance when compared with the latest image synthesis methods available today.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
搜集达人应助体贴花卷采纳,获得10
4秒前
23秒前
科研通AI6应助xiaozhou采纳,获得10
24秒前
Lifel完成签到 ,获得积分10
29秒前
38秒前
49秒前
Ava应助xiaozhou采纳,获得10
50秒前
山雨微凉发布了新的文献求助10
52秒前
沉静的安青完成签到,获得积分10
53秒前
1分钟前
科研通AI6应助山雨微凉采纳,获得10
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
Ava应助世良采纳,获得10
1分钟前
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
古月完成签到,获得积分10
1分钟前
科研通AI6应助体贴花卷采纳,获得10
1分钟前
Ava应助hxh采纳,获得10
1分钟前
企鹅完成签到,获得积分20
1分钟前
1分钟前
check003完成签到,获得积分10
1分钟前
ding应助企鹅采纳,获得10
1分钟前
科研通AI6应助浪里白条采纳,获得10
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
kouxinyao完成签到 ,获得积分10
1分钟前
1分钟前
不说再见完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6应助体贴花卷采纳,获得10
2分钟前
元宝完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399