已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Medical image fusion based on enhanced three-layer image decomposition and Chameleon swarm algorithm

图像融合 计算机科学 自适应直方图均衡化 算法 图像质量 直方图均衡化 人工智能 图像(数学) 计算机视觉 特征检测(计算机视觉) 噪音(视频) 复合图像滤波器 图像处理
作者
Phu‐Hung Dinh
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104740-104740 被引量:26
标识
DOI:10.1016/j.bspc.2023.104740
摘要

Medical image fusion has brought practical applications in clinical diagnosis. However, image fusion methods still face challenges because of problems with the quality of the input images. Phenomena such as noise or low contrast can appear in the original images, which significantly degrades the quality of the synthesized image. Most current image synthesis algorithms do not thoroughly focus on solving the image quality problem. Therefore, if the input images are noisy or low-contrast, it will significantly affect the resulting image synthesis. This study proposes a new image synthesis method that allows efficient operation even when the input image is noisy or has low contrast. Firstly, we propose a new image enhancement algorithm that focuses on solving the problem of noise or low contrast of the input image. This enhancement algorithm is built based on several methods, such as Contrast-limited adaptive histogram equalization (CLAHE), Block-matching and 3D filtering (BM3D), and Chameleon swarm algorithm (CSA). Next, we introduce a method to decompose the image into three enhanced layers based on the adaptive parameters obtained from the proposed image enhancement method. This image decomposition method is used to decompose the input medical images into high-frequency and low-frequency layers. Finally, high-frequency layers are synthesized based on the CSA method, and low-frequency layers are synthesized based on the sum of the local energy functions using the Prewitt compass operator (SLE_PCO). One hundred eighty medical images, various imaging enhancement methods, and medical image synthesis were used for comparison and evaluation. Experimental results show that our image enhancement method works well with noisy and low-contrast images. Furthermore, our image fusion method gives the best performance when compared with the latest image synthesis methods available today.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
他也蓝发布了新的文献求助10
刚刚
krkr完成签到,获得积分10
1秒前
研友_Z6Qrbn完成签到,获得积分10
4秒前
4秒前
aikeyan完成签到 ,获得积分10
6秒前
Manzia完成签到,获得积分10
7秒前
11秒前
wdd完成签到 ,获得积分10
11秒前
完美世界应助优雅的夜柳采纳,获得10
13秒前
Legend_完成签到 ,获得积分10
13秒前
枝头树上的布谷鸟完成签到 ,获得积分10
15秒前
香樟遗完成签到 ,获得积分10
18秒前
科研通AI2S应助沈业桥采纳,获得10
18秒前
CC完成签到 ,获得积分10
19秒前
大龙哥886完成签到,获得积分10
19秒前
21秒前
超级mxl完成签到,获得积分10
24秒前
星希完成签到 ,获得积分10
25秒前
EED完成签到 ,获得积分10
26秒前
125完成签到,获得积分10
26秒前
59777发布了新的文献求助10
28秒前
30秒前
31秒前
check003完成签到,获得积分10
32秒前
沈业桥完成签到,获得积分20
35秒前
vincentzhang发布了新的文献求助10
38秒前
38秒前
狗蛋儿真棒棒完成签到,获得积分10
39秒前
王饱饱完成签到 ,获得积分10
40秒前
41秒前
zy发布了新的文献求助10
42秒前
嘟嘟豆806完成签到 ,获得积分10
43秒前
dlfg发布了新的文献求助10
43秒前
思源应助77采纳,获得10
43秒前
44秒前
kyfbrahha完成签到 ,获得积分10
44秒前
魁梧的盼望完成签到 ,获得积分10
45秒前
你的qq发布了新的文献求助20
45秒前
46秒前
48秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344039
求助须知:如何正确求助?哪些是违规求助? 2971087
关于积分的说明 8646389
捐赠科研通 2651223
什么是DOI,文献DOI怎么找? 1451691
科研通“疑难数据库(出版商)”最低求助积分说明 672237
邀请新用户注册赠送积分活动 661776