Medical image fusion based on enhanced three-layer image decomposition and Chameleon swarm algorithm

图像融合 计算机科学 自适应直方图均衡化 算法 图像质量 直方图均衡化 人工智能 图像(数学) 计算机视觉 特征检测(计算机视觉) 噪音(视频) 复合图像滤波器 图像处理
作者
Phu‐Hung Dinh
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104740-104740 被引量:26
标识
DOI:10.1016/j.bspc.2023.104740
摘要

Medical image fusion has brought practical applications in clinical diagnosis. However, image fusion methods still face challenges because of problems with the quality of the input images. Phenomena such as noise or low contrast can appear in the original images, which significantly degrades the quality of the synthesized image. Most current image synthesis algorithms do not thoroughly focus on solving the image quality problem. Therefore, if the input images are noisy or low-contrast, it will significantly affect the resulting image synthesis. This study proposes a new image synthesis method that allows efficient operation even when the input image is noisy or has low contrast. Firstly, we propose a new image enhancement algorithm that focuses on solving the problem of noise or low contrast of the input image. This enhancement algorithm is built based on several methods, such as Contrast-limited adaptive histogram equalization (CLAHE), Block-matching and 3D filtering (BM3D), and Chameleon swarm algorithm (CSA). Next, we introduce a method to decompose the image into three enhanced layers based on the adaptive parameters obtained from the proposed image enhancement method. This image decomposition method is used to decompose the input medical images into high-frequency and low-frequency layers. Finally, high-frequency layers are synthesized based on the CSA method, and low-frequency layers are synthesized based on the sum of the local energy functions using the Prewitt compass operator (SLE_PCO). One hundred eighty medical images, various imaging enhancement methods, and medical image synthesis were used for comparison and evaluation. Experimental results show that our image enhancement method works well with noisy and low-contrast images. Furthermore, our image fusion method gives the best performance when compared with the latest image synthesis methods available today.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助纯情的馒头采纳,获得10
2秒前
LLLnna完成签到,获得积分10
3秒前
ren完成签到,获得积分10
4秒前
4秒前
可耐的冰巧完成签到,获得积分10
5秒前
5秒前
10秒前
11秒前
风清扬发布了新的文献求助10
11秒前
君知行发布了新的文献求助10
11秒前
12秒前
14秒前
小刘同学发布了新的文献求助10
15秒前
KCC发布了新的文献求助10
15秒前
15秒前
科研通AI2S应助XiaoZhu采纳,获得10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
y1439938345完成签到,获得积分10
19秒前
陶醉迎南完成签到,获得积分10
20秒前
20秒前
21秒前
顾懂发布了新的文献求助10
22秒前
22秒前
秋水揽星河完成签到,获得积分10
22秒前
orixero应助君知行采纳,获得10
22秒前
22秒前
zhoujunjie完成签到,获得积分10
23秒前
111发布了新的文献求助10
23秒前
杰里西完成签到,获得积分20
23秒前
勤劳绿柳完成签到 ,获得积分10
23秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
Cc发布了新的文献求助10
26秒前
28秒前
蓝天完成签到,获得积分10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736061
求助须知:如何正确求助?哪些是违规求助? 5364012
关于积分的说明 15332114
捐赠科研通 4880090
什么是DOI,文献DOI怎么找? 2622504
邀请新用户注册赠送积分活动 1571528
关于科研通互助平台的介绍 1528348