Medical image fusion based on enhanced three-layer image decomposition and Chameleon swarm algorithm

图像融合 计算机科学 自适应直方图均衡化 算法 图像质量 直方图均衡化 人工智能 图像(数学) 计算机视觉 特征检测(计算机视觉) 噪音(视频) 复合图像滤波器 图像处理
作者
Phu‐Hung Dinh
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104740-104740 被引量:26
标识
DOI:10.1016/j.bspc.2023.104740
摘要

Medical image fusion has brought practical applications in clinical diagnosis. However, image fusion methods still face challenges because of problems with the quality of the input images. Phenomena such as noise or low contrast can appear in the original images, which significantly degrades the quality of the synthesized image. Most current image synthesis algorithms do not thoroughly focus on solving the image quality problem. Therefore, if the input images are noisy or low-contrast, it will significantly affect the resulting image synthesis. This study proposes a new image synthesis method that allows efficient operation even when the input image is noisy or has low contrast. Firstly, we propose a new image enhancement algorithm that focuses on solving the problem of noise or low contrast of the input image. This enhancement algorithm is built based on several methods, such as Contrast-limited adaptive histogram equalization (CLAHE), Block-matching and 3D filtering (BM3D), and Chameleon swarm algorithm (CSA). Next, we introduce a method to decompose the image into three enhanced layers based on the adaptive parameters obtained from the proposed image enhancement method. This image decomposition method is used to decompose the input medical images into high-frequency and low-frequency layers. Finally, high-frequency layers are synthesized based on the CSA method, and low-frequency layers are synthesized based on the sum of the local energy functions using the Prewitt compass operator (SLE_PCO). One hundred eighty medical images, various imaging enhancement methods, and medical image synthesis were used for comparison and evaluation. Experimental results show that our image enhancement method works well with noisy and low-contrast images. Furthermore, our image fusion method gives the best performance when compared with the latest image synthesis methods available today.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白榆完成签到,获得积分20
刚刚
PLUTO_K22完成签到,获得积分10
刚刚
刚刚
张振宇发布了新的文献求助20
刚刚
1秒前
1秒前
1秒前
风趣谷秋完成签到,获得积分20
2秒前
妞妞娴完成签到,获得积分10
2秒前
曾云璐完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
4秒前
充电宝应助顺心的惜蕊采纳,获得10
4秒前
方向发布了新的文献求助10
5秒前
桃真心发布了新的文献求助10
5秒前
chengwenyu发布了新的文献求助10
6秒前
hugo完成签到,获得积分10
6秒前
6秒前
7秒前
吴楚楚发布了新的文献求助10
7秒前
yun完成签到,获得积分20
7秒前
平常的半凡应助lzb采纳,获得10
7秒前
7秒前
文章仙人发布了新的文献求助10
7秒前
Ava应助A_goal采纳,获得10
8秒前
9秒前
宋toki发布了新的文献求助10
9秒前
ELEGENCE发布了新的文献求助10
10秒前
秋来九月八完成签到 ,获得积分10
10秒前
zhangkx23发布了新的文献求助10
11秒前
charlie完成签到,获得积分10
12秒前
LI发布了新的文献求助10
12秒前
英俊的铭应助qi采纳,获得10
13秒前
豚骨拉面发布了新的文献求助10
13秒前
阿峰完成签到,获得积分10
13秒前
Tingting发布了新的文献求助10
14秒前
15秒前
文章仙人完成签到,获得积分10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962022
求助须知:如何正确求助?哪些是违规求助? 3508316
关于积分的说明 11140304
捐赠科研通 3240919
什么是DOI,文献DOI怎么找? 1791125
邀请新用户注册赠送积分活动 872741
科研通“疑难数据库(出版商)”最低求助积分说明 803352