Medical image fusion based on enhanced three-layer image decomposition and Chameleon swarm algorithm

图像融合 计算机科学 自适应直方图均衡化 算法 图像质量 直方图均衡化 人工智能 图像(数学) 计算机视觉 特征检测(计算机视觉) 噪音(视频) 复合图像滤波器 图像处理
作者
Phu‐Hung Dinh
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104740-104740 被引量:26
标识
DOI:10.1016/j.bspc.2023.104740
摘要

Medical image fusion has brought practical applications in clinical diagnosis. However, image fusion methods still face challenges because of problems with the quality of the input images. Phenomena such as noise or low contrast can appear in the original images, which significantly degrades the quality of the synthesized image. Most current image synthesis algorithms do not thoroughly focus on solving the image quality problem. Therefore, if the input images are noisy or low-contrast, it will significantly affect the resulting image synthesis. This study proposes a new image synthesis method that allows efficient operation even when the input image is noisy or has low contrast. Firstly, we propose a new image enhancement algorithm that focuses on solving the problem of noise or low contrast of the input image. This enhancement algorithm is built based on several methods, such as Contrast-limited adaptive histogram equalization (CLAHE), Block-matching and 3D filtering (BM3D), and Chameleon swarm algorithm (CSA). Next, we introduce a method to decompose the image into three enhanced layers based on the adaptive parameters obtained from the proposed image enhancement method. This image decomposition method is used to decompose the input medical images into high-frequency and low-frequency layers. Finally, high-frequency layers are synthesized based on the CSA method, and low-frequency layers are synthesized based on the sum of the local energy functions using the Prewitt compass operator (SLE_PCO). One hundred eighty medical images, various imaging enhancement methods, and medical image synthesis were used for comparison and evaluation. Experimental results show that our image enhancement method works well with noisy and low-contrast images. Furthermore, our image fusion method gives the best performance when compared with the latest image synthesis methods available today.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
再给我两分钟完成签到,获得积分10
刚刚
万能图书馆应助景飞丹采纳,获得10
刚刚
苹果夜梦完成签到 ,获得积分10
刚刚
科研通AI6应助keke采纳,获得10
刚刚
xdc发布了新的文献求助10
刚刚
刚刚
汉堡包应助新能源采纳,获得10
2秒前
中意完成签到 ,获得积分10
2秒前
英吉利25发布了新的文献求助10
3秒前
3秒前
乐生发布了新的文献求助10
3秒前
星辰大海应助雪白煜城采纳,获得10
4秒前
老实的安阳完成签到,获得积分10
4秒前
5秒前
JIA完成签到,获得积分10
5秒前
astronautadam发布了新的文献求助10
6秒前
孙博发布了新的文献求助10
6秒前
英姑应助知禾采纳,获得10
7秒前
wang发布了新的文献求助10
7秒前
aaa123发布了新的文献求助10
7秒前
7秒前
8秒前
infognet完成签到,获得积分20
8秒前
菠萝吹雪发布了新的文献求助10
8秒前
NexusExplorer应助Zephyr采纳,获得10
9秒前
9秒前
9秒前
DT完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
张之晟完成签到,获得积分20
10秒前
星辰大海应助hkym采纳,获得10
10秒前
11秒前
qingjiuhua发布了新的文献求助10
13秒前
13秒前
科研通AI6应助xdc采纳,获得10
14秒前
桐桐应助小恐龙采纳,获得10
14秒前
14秒前
科研通AI6应助LIULIYUAN采纳,获得30
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626987
求助须知:如何正确求助?哪些是违规求助? 4712947
关于积分的说明 14960796
捐赠科研通 4783234
什么是DOI,文献DOI怎么找? 2554596
邀请新用户注册赠送积分活动 1516222
关于科研通互助平台的介绍 1476527