细胞生物学
生物
有丝分裂
截形苜蓿
细胞周期
根瘤菌
内复制
染色质
细胞分裂
细胞
遗传学
共生
基因
细菌
作者
Morgane Batzenschlager,Beatrice Lace,Ning Zhang,Chao Su,Sabrina Egli,Pascal Krohn,Jule Salfeld,Franck Anicet Ditengou,Thomas Laux,Thomas Ott
标识
DOI:10.1101/2023.03.28.534635
摘要
During root nodule symbiosis (RNS), cell-division activity is re-initiated and sustained in the root cortex to create a hospitable cellular niche. Such temporary and spatially confined site is required to render host cells compatible with the intracellular progression of rhizobia. Although it has been suggested that early infection events might involve a pre-mitotic cell-cycle arrest, this process has not been dissected with cellular resolution. Here, we show that a dual-colour Medicago histone reporter robustly identifies cells with different mitotic or endoreduplication activities in the root cortex. By imaging deep root tissues, we found that a confined trajectory of cortical cells that are transcellularly passed by infection threads are in a stage of the cell-cycle that is distinct from directly adjacent cells. Distinctive features of infected cells include nuclear widening and large-scale chromatin rearrangements consistent with a cell-cycle exit prior to differentiation. Using a combination of fluorescent reporters demarcating cell-cycle phase progression, we confirmed that a reduced proliferation potential and modulating the G2/M transition, a process possibly controlled by the NF-YA1 transcription factor, mark the success of rhizobial delivery to nodule cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI