Effectively improving the hardness-strength-toughness of carburized bearing steel via nanoprecipitates and fine grain structure

材料科学 韧性 奥氏体 晶界 冶金 复合材料 粒度 压痕硬度 微观结构
作者
Qianwei Guo,Hanghang Liu,Chen Sun,Hongwei Liu,Yanfei Cao,Leitao Wang,Xin Cai,Paixian Fu,Pei Wang,Dianzhong Li
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier]
卷期号:872: 144961-144961 被引量:9
标识
DOI:10.1016/j.msea.2023.144961
摘要

Cryogenic treatments are fast and efficient methods used to improve the mechanical properties of metal components by promoting retained austenite (RA) transformation. However, the relationship between the evolution of RA with the gradient changes in content and hardness-strength-toughness improvements during this period are unclear. The present study investigated the beneficial effects of a cryogenic treatment on the microstructural evolution and mechanical properties of a gradient-structured carburized M50NiL bearing steel. The results revealed that the RA average sizes, the densities of the high-angle grain boundaries (DHAGBs) and low-angle grain boundaries (DLAGBs), and the hardness of the carburized layer changed with increasing distance from the surface. Compared with the untreated samples, the cryogenically treated samples demonstrated a 30% greater effective hardened layer thickness as well as 15.6% and 22.9% higher strength and toughness, respectively. The synergistic enhancements of the hardness, strength, and toughness provided by the cryogenic treatment were attributed to the increased nanoprecipitate content and finer grain structure generated in situ during transformation and further decomposition of the RA, which resulted in reductions of up to 83.6% in the RA content. This work provided new ideas for innovative enhancements of gradient-structured materials with superior mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏橪完成签到,获得积分10
刚刚
刚刚
dddddd发布了新的文献求助10
1秒前
什么也难不倒我完成签到 ,获得积分10
1秒前
1秒前
立马毕业发布了新的文献求助10
1秒前
喜悦的尔阳完成签到,获得积分10
2秒前
2秒前
现实的白开水完成签到,获得积分10
2秒前
2秒前
SHDeathlock发布了新的文献求助50
2秒前
lunan发布了新的文献求助10
3秒前
3秒前
酷炫过客完成签到,获得积分20
3秒前
4秒前
5秒前
5秒前
华仔应助xiaoziyi666采纳,获得10
5秒前
渝州人完成签到,获得积分10
5秒前
5秒前
hanna发布了新的文献求助10
5秒前
科研通AI2S应助neil采纳,获得10
6秒前
大模型应助天真思雁采纳,获得10
6秒前
酷炫过客发布了新的文献求助10
6秒前
6秒前
深情凡灵发布了新的文献求助10
7秒前
马保国123发布了新的文献求助10
7秒前
胡须完成签到,获得积分10
8秒前
jjgod发布了新的文献求助10
8秒前
muomuo发布了新的文献求助10
9秒前
湘华完成签到,获得积分10
9秒前
渝州人发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
开放鸵鸟发布了新的文献求助10
11秒前
11秒前
温暖以蓝完成签到,获得积分20
11秒前
WTF完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762