Employees Adhere More to Unethical Instructions from Human Than AI Supervisors: Complementing Experimental Evidence with Machine Learning

模棱两可 心理学 监督人 商业道德 人工智能 社会心理学 规范性 感知 计算机科学 公共关系 管理 认识论 政治学 哲学 经济 神经科学 程序设计语言
作者
Lukas Lanz,Roman Briker,Fabiola H. Gerpott
出处
期刊:Journal of Business Ethics [Springer Nature]
卷期号:189 (3): 625-646 被引量:20
标识
DOI:10.1007/s10551-023-05393-1
摘要

Abstract The role of artificial intelligence (AI) in organizations has fundamentally changed from performing routine tasks to supervising human employees. While prior studies focused on normative perceptions of such AI supervisors , employees’ behavioral reactions towards them remained largely unexplored. We draw from theories on AI aversion and appreciation to tackle the ambiguity within this field and investigate if and why employees might adhere to unethical instructions either from a human or an AI supervisor. In addition, we identify employee characteristics affecting this relationship. To inform this debate, we conducted four experiments (total N = 1701) and used two state-of-the-art machine learning algorithms (causal forest and transformers). We consistently find that employees adhere less to unethical instructions from an AI than a human supervisor. Further, individual characteristics such as the tendency to comply without dissent or age constitute important boundary conditions. In addition, Study 1 identified that the perceived mind of the supervisors serves as an explanatory mechanism. We generate further insights on this mediator via experimental manipulations in two pre-registered studies by manipulating mind between two AI (Study 2) and two human supervisors (Study 3). In (pre-registered) Study 4, we replicate the resistance to unethical instructions from AI supervisors in an incentivized experimental setting. Our research generates insights into the ‘black box’ of human behavior toward AI supervisors, particularly in the moral domain, and showcases how organizational researchers can use machine learning methods as powerful tools to complement experimental research for the generation of more fine-grained insights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
璐宝完成签到,获得积分10
2秒前
miracle1005发布了新的文献求助10
2秒前
2秒前
平家boy完成签到,获得积分10
3秒前
甜蜜慕凝完成签到,获得积分10
3秒前
3秒前
浅笑宝宝完成签到,获得积分10
3秒前
小燕子完成签到 ,获得积分10
4秒前
申振发布了新的文献求助20
4秒前
时光完成签到,获得积分10
4秒前
5秒前
5秒前
大模型应助夏一二采纳,获得10
5秒前
Calvin发布了新的文献求助10
5秒前
kx发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
无辜的猎豹完成签到 ,获得积分10
6秒前
7秒前
lyy发布了新的文献求助10
8秒前
神勇的邑发布了新的文献求助10
8秒前
tamaco完成签到,获得积分10
8秒前
情怀应助曦子曦子采纳,获得10
9秒前
10秒前
艺阳完成签到,获得积分10
10秒前
zhuanghj5发布了新的文献求助10
10秒前
11秒前
lzy发布了新的文献求助10
11秒前
11秒前
lyt发布了新的文献求助10
12秒前
12秒前
wanci应助乐观的雨采纳,获得10
12秒前
跨进行发布了新的文献求助10
13秒前
13秒前
14秒前
zty568发布了新的文献求助10
15秒前
香蕉子骞发布了新的文献求助10
15秒前
默默的巧蕊完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197