Design and performance of a novel high-efficiency WO3-based combustion catalyst and its catalytic mechanism

高氯酸铵 生物炭 催化作用 燃烧 材料科学 煅烧 化学工程 催化燃烧 掺杂剂 密度泛函理论 分解 热解 热分解 纳米材料 兴奋剂 纳米技术 化学 物理化学 有机化学 计算化学 工程类 光电子学
作者
Shuai Dong,Jun Hu,Qin Zhao,Hui Li,Suhang Chen,Zhong Chen,Kangzhen Xu
出处
期刊:Applied Surface Science [Elsevier]
卷期号:624: 157130-157130 被引量:15
标识
DOI:10.1016/j.apsusc.2023.157130
摘要

To develop efficient combustion catalyst for solid propellants, a novel WO3-based composite (CuX-WO3/Biochar) was designed by the method of doping and loading. As a dopant, Cu has the advantages of producing multiple bands, inhibiting grain growth and restraining exciton–exciton collisions. Meanwhile, biochar is cheap and available as a carrier, which can effectively inhibit the agglomeration of nanomaterials. Therefore, in this work, Cu-doped WO3 nanoparticles were uniformly anchored on surface of biochar by in-situ solvothermal reaction combined calcination method, which significantly increased the surface-active area, and was firstly applied to catalytic decomposition and laser ignition of ammonium perchlorate (AP), 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and 5,5′-bistetrazole-1,1′-diolate (TKX-50). With the introduction of CuX-WO3/Biochar, decomposition peak temperature of AP, RDX and TKX-50 diminished by 97.0, 6.7 and 37.9℃, and activation energy decreased by 14.4, 93.5 and 22.6 kJ mol−1, respectively. Simultaneously, flame brightness, flame area and flame propagation speed during combustion of RDX and TKX-50 were evidently improved after CuX-WO3/Biochar was added. Finally, electron transfer mechanism of catalytic thermal decomposition of energetic materials was deduced based on Density Functional Theory (DFT) calculation and characterization analysis. This study will provide a new insight into development of combustion catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jyy77完成签到 ,获得积分10
刚刚
0707007发布了新的文献求助100
1秒前
英姑应助ziming313采纳,获得10
2秒前
Zz完成签到,获得积分10
2秒前
3秒前
111发布了新的文献求助10
3秒前
3秒前
5秒前
caiiiii发布了新的文献求助10
5秒前
6秒前
6秒前
共享精神应助Lvj采纳,获得10
7秒前
李健应助不是大闸谢采纳,获得10
7秒前
呜呜呜完成签到,获得积分10
7秒前
小卫发布了新的文献求助10
7秒前
Aya发布了新的文献求助10
8秒前
隐形蜡烛发布了新的文献求助10
9秒前
10秒前
zyyyy发布了新的文献求助10
10秒前
完美世界应助ZHI采纳,获得10
10秒前
莎莎完成签到,获得积分10
11秒前
田様应助搞怪白莲采纳,获得10
11秒前
FashionBoy应助Yy采纳,获得10
11秒前
yl关注了科研通微信公众号
12秒前
12秒前
cheyy发布了新的文献求助10
13秒前
科研通AI5应助茂茂357采纳,获得30
14秒前
Lianna完成签到,获得积分10
14秒前
gqqq发布了新的文献求助10
14秒前
wenfeng完成签到 ,获得积分10
15秒前
Hedy发布了新的文献求助10
16秒前
WIN完成签到,获得积分10
16秒前
SciGPT应助刻苦盼烟采纳,获得10
16秒前
勤恳白山发布了新的文献求助60
17秒前
17秒前
18秒前
kw完成签到,获得积分10
19秒前
20秒前
谷粱发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543107
求助须知:如何正确求助?哪些是违规求助? 3120526
关于积分的说明 9342707
捐赠科研通 2818521
什么是DOI,文献DOI怎么找? 1549648
邀请新用户注册赠送积分活动 722213
科研通“疑难数据库(出版商)”最低求助积分说明 713049