Attention guided neural ODE network for breast tumor segmentation in medical images

计算机科学 人工神经网络 人工智能 可解释性 过度拟合 分割 乳腺超声检查 特征(语言学) 深度学习 乳腺癌 模式识别(心理学) 机器学习 软件可移植性 数据挖掘 乳腺摄影术 癌症 医学 程序设计语言 语言学 哲学 内科学
作者
Jintao Ru,Beichen Lu,Buran Chen,Jialin Shi,Gaoxiang Chen,Meihao Wang,Zhifang Pan,Yezhi Lin,Zhihong Gao,Jiejie Zhou,Xiaoming Liu,Chen Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:159: 106884-106884 被引量:35
标识
DOI:10.1016/j.compbiomed.2023.106884
摘要

Breast cancer is the most common cancer in women. Ultrasound is a widely used screening tool for its portability and easy operation, and DCE-MRI can highlight the lesions more clearly and reveal the characteristics of tumors. They are both noninvasive and nonradiative for assessment of breast cancer. Doctors make diagnoses and further instructions through the sizes, shapes and textures of the breast masses showed on medical images, so automatic tumor segmentation via deep neural networks can to some extent assist doctors. Compared to some challenges which the popular deep neural networks have faced, such as large amounts of parameters, lack of interpretability, overfitting problem, etc., we propose a segmentation network named Att-U-Node which uses attention modules to guide a neural ODE-based framework, trying to alleviate the problems mentioned above. Specifically, the network uses ODE blocks to make up an encoder-decoder structure, feature modeling by neural ODE is completed at each level. Besides, we propose to use an attention module to calculate the coefficient and generate a much refined attention feature for skip connection. Three public available breast ultrasound image datasets (i.e. BUSI, BUS and OASBUD) and a private breast DCE-MRI dataset are used to assess the efficiency of the proposed model, besides, we upgrade the model to 3D for tumor segmentation with the data selected from Public QIN Breast DCE-MRI. The experiments show that the proposed model achieves competitive results compared with the related methods while mitigates the common problems of deep neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ammon发布了新的文献求助10
2秒前
Www发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
每㐬山风关注了科研通微信公众号
6秒前
WHHW完成签到,获得积分10
6秒前
西西里柠檬发布了新的文献求助100
6秒前
英姑应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
DijiaXu应助科研通管家采纳,获得30
7秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
今后应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
8秒前
Ren应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得20
8秒前
Ammon完成签到,获得积分10
8秒前
8秒前
8秒前
Liufgui应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
汉堡包应助怕孤独的唇彩采纳,获得10
8秒前
shiwo110发布了新的文献求助10
9秒前
jitianxing发布了新的文献求助10
9秒前
英姑应助罗氏集团采纳,获得10
9秒前
10秒前
凯文完成签到 ,获得积分10
10秒前
12秒前
耗材完成签到,获得积分10
12秒前
静水流深发布了新的文献求助10
12秒前
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070