作者
Yipeng Cheng,Danni A. Gadd,Christian Gieger,Karla Monterrubio-Gómez,Yufei Zhang,Imrich Berta,Michael J. Stam,Natalia Szlachetka,Evgenii Lobzaev,Nicola Wrobel,Lee Murphy,Archie Campbell,Clifford Nangle,Rosie M. Walker,Chloe Fawns‐Ritchie,Annette Peters,Wolfgang Rathmann,David J. Porteous,Kathryn L. Evans,Andrew M. McIntosh,Timothy I. Cannings,Mélanie Waldenberger,Andrea Ganna,Daniel L. McCartney,Catalina A. Vallejos,Riccardo E. Marioni
摘要
Type 2 diabetes mellitus (T2D) presents a major health and economic burden that could be alleviated with improved early prediction and intervention. While standard risk factors have shown good predictive performance, we show that the use of blood-based DNA methylation information leads to a significant improvement in the prediction of 10-year T2D incidence risk. Previous studies have been largely constrained by linear assumptions, the use of cytosine–guanine pairs one-at-a-time and binary outcomes. We present a flexible approach (via an R package, MethylPipeR) based on a range of linear and tree-ensemble models that incorporate time-to-event data for prediction. Using the Generation Scotland cohort (training set ncases = 374, ncontrols = 9,461; test set ncases = 252, ncontrols = 4,526) our best-performing model (area under the receiver operating characteristic curve (AUC) = 0.872, area under the precision-recall curve (PRAUC) = 0.302) showed notable improvement in 10-year onset prediction beyond standard risk factors (AUC = 0.839, precision–recall AUC = 0.227). Replication was observed in the German-based KORA study (n = 1,451, ncases = 142, P = 1.6 × 10−5). Early type 2 diabetes (T2D) risk assessment could help slow or prevent disease onset. Here the authors used blood-based DNA methylation data to develop 10-year risk prediction models for incident T2D. The results show an improvement in performance beyond standard risk factors typically used to predict the risk of T2D onset.