DI-Gesture: Domain-Independent and Real-Time Gesture Recognition with Millimeter-Wave Signals

手势 计算机科学 手势识别 稳健性(进化) 人工智能 分割 时域 推论 计算机视觉 语音识别 模式识别(心理学) 生物化学 基因 化学
作者
Yadong Li,Dongheng Zhang,Jinbo Chen,Jinwei Wan,Dong Zhang,Yang Hu,Qibin Sun,Yan Chen
标识
DOI:10.1109/globecom48099.2022.10001175
摘要

Human gesture recognition using millimeter wave (mmWave) signals provides attractive applications including smart home and in-car interfaces. While existing works achieve promising performance under controlled settings, practical applications are still limited due to the need for intensive data collection, extra training efforts when adapting to new domains (i.e. environments, persons and locations) and poor performance for real-time recognition. In this paper, we propose DI-Gesture, a domain-independent and real-time mmWave gesture recognition system. Specifically, we first derive the signal variation corresponding to human gestures with spatial-temporal processing. To enhance the robustness of the system and reduce data collecting efforts, we design a data augmentation framework based on the correlation between signal patterns and gesture variations. Furthermore, we propose a dynamic window mechanism to perform gesture segmentation automatically and accurately, thus enabling real-time recognition. Finally, we build a lightweight neural network to extract spatial-temporal information from the data for gesture classification. Extensive experimental results show DI-Gesture achieves an average accuracy of 97.92%, 99.18% and 98.76% for new users, environments and locations, respectively. In real-time scenario, the accuracy of DI-Gesture reaches over 97% with an average inference time of 2.87ms, which demonstrates the superior robustness and effectiveness of our system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不吃晚饭完成签到,获得积分10
1秒前
缓慢手机完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
领导范儿应助莽哥采纳,获得10
2秒前
哎哟我去完成签到,获得积分10
2秒前
自觉博超完成签到,获得积分10
2秒前
爆米花应助香蕉雅香采纳,获得10
3秒前
4秒前
YeY关注了科研通微信公众号
4秒前
suga'完成签到 ,获得积分10
5秒前
awu完成签到 ,获得积分10
5秒前
lyn应助automan采纳,获得10
5秒前
6秒前
6秒前
cc发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
花花123发布了新的文献求助10
8秒前
NexusExplorer应助程洁素采纳,获得10
8秒前
科研通AI6应助年轻迪奥采纳,获得10
9秒前
Healer完成签到,获得积分10
10秒前
10秒前
西瓜完成签到 ,获得积分10
11秒前
Liyuan发布了新的文献求助10
12秒前
12秒前
12秒前
无花果应助二悬铃木采纳,获得10
12秒前
12秒前
13秒前
Lucas应助超人不会飞采纳,获得10
13秒前
gq0401完成签到,获得积分10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
zcl应助科研通管家采纳,获得50
13秒前
bonnie应助科研通管家采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406