A Geometry-Enhanced 6D Pose Estimation Network With Incomplete Shape Recovery for Industrial Parts

点云 RGB颜色模型 人工智能 计算机视觉 稳健性(进化) 姿势 计算机科学 生物化学 基因 化学
作者
Qide Wang,Daxin Liu,Zhenyu Liu,Jiatong Xu,Hui Liu,Jianrong Tan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:8
标识
DOI:10.1109/tim.2023.3236334
摘要

Accurate and robust 6-DOF (6D) pose estimation from a single RGB image and depth map (RGB-D) image is an essential task of intelligent manufacturing, such as robot assembly and digital twin. However, incomplete and noisy 3-D data acquired from depth sensors make the task challenging, especially for various industrial parts without sufficient textures, where the occlusion further exacerbates the problem. To tackle this issue, this article proposes a geometry-enhanced network with incomplete shape recovery (GER-Net) to estimate the 6D pose of industrial parts. First, an incomplete 3-D shape recovery (ISR) module with a learnable shape protection (SP) layer is introduced to recover the complete 3-D geometry shapes of raw point clouds obtained from depth measurements. Subsequently, the multimodal features extracted from raw RGB-D data are enhanced with the geometry information from the recovered point cloud via multiscale concatenation and recurrent forward fusion in the point cloud space. In this way, the enhanced RGB-D representations contribute to the regression of accurate 6D pose. Experiments on two popular benchmark datasets (LineMOD and Occlusion-LineMOD) show that the proposed approach achieves state-of-the-art performance. Furthermore, a real-world low-texture industrial part dataset industrial texture-less machined and 3-D-printed parts (ITM3D) is presented to fully validate the effectiveness of our method, where it also achieves the best performance with remarkable accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky完成签到,获得积分20
刚刚
点击发货完成签到,获得积分10
刚刚
刚刚
刚刚
kinase完成签到 ,获得积分10
1秒前
1秒前
张张完成签到,获得积分10
1秒前
123完成签到,获得积分10
2秒前
陌上花开完成签到,获得积分10
2秒前
guo发布了新的文献求助10
3秒前
无限秋天发布了新的文献求助10
4秒前
whichwhy发布了新的文献求助10
5秒前
小星星发布了新的文献求助10
7秒前
小马甲应助Nomb1采纳,获得10
8秒前
FashionBoy应助章慕思采纳,获得10
8秒前
BELIEVE完成签到 ,获得积分10
8秒前
ywayw完成签到,获得积分10
8秒前
英姑应助浅斟低唱采纳,获得10
9秒前
Hello应助guo采纳,获得10
10秒前
11秒前
12秒前
Akim应助白茶泡泡球采纳,获得10
14秒前
qcl发布了新的文献求助10
15秒前
15秒前
快去爬山完成签到 ,获得积分10
17秒前
吕小布完成签到,获得积分10
18秒前
18秒前
Sjingjia完成签到,获得积分10
18秒前
Melt发布了新的文献求助10
18秒前
魔女完成签到 ,获得积分10
19秒前
HongJiang完成签到,获得积分10
20秒前
科研通AI5应助Ki_Ayasato采纳,获得10
21秒前
科研通AI2S应助吕小布采纳,获得10
21秒前
penghuiye完成签到,获得积分10
22秒前
无限秋天发布了新的文献求助10
22秒前
芒果布丁完成签到 ,获得积分10
23秒前
23秒前
小星星完成签到,获得积分10
25秒前
26秒前
五十一完成签到 ,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093