A Geometry-Enhanced 6D Pose Estimation Network With Incomplete Shape Recovery for Industrial Parts

点云 RGB颜色模型 人工智能 计算机视觉 稳健性(进化) 姿势 计算机科学 生物化学 基因 化学
作者
Qide Wang,Daxin Liu,Zhenyu Liu,Jiatong Xu,Hui Liu,Jianrong Tan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:8
标识
DOI:10.1109/tim.2023.3236334
摘要

Accurate and robust 6-DOF (6D) pose estimation from a single RGB image and depth map (RGB-D) image is an essential task of intelligent manufacturing, such as robot assembly and digital twin. However, incomplete and noisy 3-D data acquired from depth sensors make the task challenging, especially for various industrial parts without sufficient textures, where the occlusion further exacerbates the problem. To tackle this issue, this article proposes a geometry-enhanced network with incomplete shape recovery (GER-Net) to estimate the 6D pose of industrial parts. First, an incomplete 3-D shape recovery (ISR) module with a learnable shape protection (SP) layer is introduced to recover the complete 3-D geometry shapes of raw point clouds obtained from depth measurements. Subsequently, the multimodal features extracted from raw RGB-D data are enhanced with the geometry information from the recovered point cloud via multiscale concatenation and recurrent forward fusion in the point cloud space. In this way, the enhanced RGB-D representations contribute to the regression of accurate 6D pose. Experiments on two popular benchmark datasets (LineMOD and Occlusion-LineMOD) show that the proposed approach achieves state-of-the-art performance. Furthermore, a real-world low-texture industrial part dataset industrial texture-less machined and 3-D-printed parts (ITM3D) is presented to fully validate the effectiveness of our method, where it also achieves the best performance with remarkable accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
lianqing完成签到,获得积分10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
4秒前
RC_Wang应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
hh应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得30
4秒前
4秒前
Leif应助科研通管家采纳,获得20
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
忘羡222发布了新的文献求助20
7秒前
丰富猕猴桃完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
JamesPei应助咿咿呀呀采纳,获得10
8秒前
www完成签到,获得积分10
8秒前
科研通AI2S应助Jenny采纳,获得10
9秒前
limin完成签到,获得积分10
10秒前
10秒前
风格完成签到,获得积分10
11秒前
情怀应助专心搞学术采纳,获得20
12秒前
12秒前
zeke发布了新的文献求助10
12秒前
不爱吃糖发布了新的文献求助10
13秒前
852应助冷傲迎梦采纳,获得10
14秒前
陶醉觅夏发布了新的文献求助200
15秒前
15秒前
exile完成签到,获得积分10
16秒前
朱一龙发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824