An Efficient Machine Learning-Based Emotional Valence Recognition Approach Towards Wearable EEG

脑电图 计算机科学 人工智能 情绪分类 二元分类 情绪识别 可穿戴计算机 价(化学) 语音识别 模式识别(心理学) 情绪检测 特征(语言学) 特征提取 情感计算 水准点(测量) 情感配价 机器学习 支持向量机 认知 心理学 嵌入式系统 神经科学 哲学 地理 物理 精神科 量子力学 语言学 大地测量学
作者
Lamiaa Abdel‐Hamid
出处
期刊:Sensors [MDPI AG]
卷期号:23 (3): 1255-1255 被引量:7
标识
DOI:10.3390/s23031255
摘要

Emotion artificial intelligence (AI) is being increasingly adopted in several industries such as healthcare and education. Facial expressions and tone of speech have been previously considered for emotion recognition, yet they have the drawback of being easily manipulated by subjects to mask their true emotions. Electroencephalography (EEG) has emerged as a reliable and cost-effective method to detect true human emotions. Recently, huge research effort has been put to develop efficient wearable EEG devices to be used by consumers in out of the lab scenarios. In this work, a subject-dependent emotional valence recognition method is implemented that is intended for utilization in emotion AI applications. Time and frequency features were computed from a single time series derived from the Fp1 and Fp2 channels. Several analyses were performed on the strongest valence emotions to determine the most relevant features, frequency bands, and EEG timeslots using the benchmark DEAP dataset. Binary classification experiments resulted in an accuracy of 97.42% using the alpha band, by that outperforming several approaches from literature by ~3–22%. Multiclass classification gave an accuracy of 95.0%. Feature computation and classification required less than 0.1 s. The proposed method thus has the advantage of reduced computational complexity as, unlike most methods in the literature, only two EEG channels were considered. In addition, minimal features concluded from the thorough analyses conducted in this study were used to achieve state-of-the-art performance. The implemented EEG emotion recognition method thus has the merits of being reliable and easily reproducible, making it well-suited for wearable EEG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
terrell完成签到,获得积分10
刚刚
ai zs发布了新的文献求助10
刚刚
珊珊发布了新的文献求助10
1秒前
Star关注了科研通微信公众号
1秒前
Darknewnew发布了新的文献求助10
2秒前
青柠发布了新的文献求助10
2秒前
小用一阵完成签到,获得积分10
3秒前
浅浅的完成签到 ,获得积分10
3秒前
昏睡的小鸭子完成签到,获得积分10
4秒前
5秒前
xcs完成签到,获得积分10
5秒前
6秒前
7秒前
吹雪完成签到,获得积分0
8秒前
胖豆儿发布了新的文献求助10
8秒前
9秒前
shiqiyu发布了新的文献求助10
9秒前
南风发布了新的文献求助10
9秒前
青柠完成签到,获得积分20
9秒前
ljs完成签到,获得积分10
9秒前
笑得开心完成签到,获得积分10
10秒前
Akim应助翁雁丝采纳,获得10
10秒前
仅此而已应助CH采纳,获得10
10秒前
慕青应助健康的幻珊采纳,获得10
11秒前
11秒前
Max发布了新的文献求助10
11秒前
jinzhou完成签到,获得积分10
11秒前
12秒前
岂识浊醪妙理给liuxinli的求助进行了留言
12秒前
奋斗的丝完成签到 ,获得积分10
12秒前
传奇3应助小红花采纳,获得10
12秒前
13秒前
18062677029完成签到 ,获得积分10
13秒前
良辰应助简单如容采纳,获得10
13秒前
13秒前
13秒前
zhao发布了新的文献求助10
13秒前
futianyu发布了新的文献求助10
13秒前
14秒前
帅气的襄发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159180
求助须知:如何正确求助?哪些是违规求助? 2810321
关于积分的说明 7887314
捐赠科研通 2469183
什么是DOI,文献DOI怎么找? 1314687
科研通“疑难数据库(出版商)”最低求助积分说明 630682
版权声明 602012