An Efficient Machine Learning-Based Emotional Valence Recognition Approach Towards Wearable EEG

脑电图 计算机科学 人工智能 情绪分类 二元分类 情绪识别 可穿戴计算机 价(化学) 语音识别 模式识别(心理学) 情绪检测 特征(语言学) 特征提取 情感计算 水准点(测量) 情感配价 机器学习 支持向量机 认知 心理学 嵌入式系统 神经科学 哲学 地理 物理 精神科 量子力学 语言学 大地测量学
作者
Lamiaa Abdel‐Hamid
出处
期刊:Sensors [MDPI AG]
卷期号:23 (3): 1255-1255 被引量:7
标识
DOI:10.3390/s23031255
摘要

Emotion artificial intelligence (AI) is being increasingly adopted in several industries such as healthcare and education. Facial expressions and tone of speech have been previously considered for emotion recognition, yet they have the drawback of being easily manipulated by subjects to mask their true emotions. Electroencephalography (EEG) has emerged as a reliable and cost-effective method to detect true human emotions. Recently, huge research effort has been put to develop efficient wearable EEG devices to be used by consumers in out of the lab scenarios. In this work, a subject-dependent emotional valence recognition method is implemented that is intended for utilization in emotion AI applications. Time and frequency features were computed from a single time series derived from the Fp1 and Fp2 channels. Several analyses were performed on the strongest valence emotions to determine the most relevant features, frequency bands, and EEG timeslots using the benchmark DEAP dataset. Binary classification experiments resulted in an accuracy of 97.42% using the alpha band, by that outperforming several approaches from literature by ~3–22%. Multiclass classification gave an accuracy of 95.0%. Feature computation and classification required less than 0.1 s. The proposed method thus has the advantage of reduced computational complexity as, unlike most methods in the literature, only two EEG channels were considered. In addition, minimal features concluded from the thorough analyses conducted in this study were used to achieve state-of-the-art performance. The implemented EEG emotion recognition method thus has the merits of being reliable and easily reproducible, making it well-suited for wearable EEG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
5秒前
5秒前
cyw发布了新的文献求助10
5秒前
rationality发布了新的文献求助10
6秒前
无头骑士完成签到,获得积分10
6秒前
6秒前
cling关注了科研通微信公众号
6秒前
科研通AI6应助zcl采纳,获得10
7秒前
love发布了新的文献求助10
7秒前
紫哈登发布了新的文献求助30
8秒前
pluto应助直率云朵采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
猫橘汽水完成签到,获得积分10
11秒前
顾矜应助秀丽的白玉采纳,获得10
12秒前
12秒前
烂漫念柏发布了新的文献求助10
12秒前
none完成签到,获得积分10
14秒前
14秒前
YiZT发布了新的文献求助10
16秒前
16秒前
17秒前
冷傲的道罡完成签到,获得积分10
18秒前
天天向上发布了新的文献求助10
19秒前
univ完成签到,获得积分10
19秒前
20秒前
20秒前
Jasper应助old杜采纳,获得10
21秒前
李健应助科研通管家采纳,获得10
21秒前
实验室应助科研通管家采纳,获得30
21秒前
cdercder发布了新的文献求助10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420821
求助须知:如何正确求助?哪些是违规求助? 4535884
关于积分的说明 14151756
捐赠科研通 4452650
什么是DOI,文献DOI怎么找? 2442470
邀请新用户注册赠送积分活动 1433895
关于科研通互助平台的介绍 1410988