已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Efficient Machine Learning-Based Emotional Valence Recognition Approach Towards Wearable EEG

脑电图 计算机科学 人工智能 情绪分类 二元分类 情绪识别 可穿戴计算机 价(化学) 语音识别 模式识别(心理学) 情绪检测 特征(语言学) 特征提取 情感计算 水准点(测量) 情感配价 机器学习 支持向量机 认知 心理学 嵌入式系统 神经科学 哲学 地理 物理 精神科 量子力学 语言学 大地测量学
作者
Lamiaa Abdel‐Hamid
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (3): 1255-1255 被引量:7
标识
DOI:10.3390/s23031255
摘要

Emotion artificial intelligence (AI) is being increasingly adopted in several industries such as healthcare and education. Facial expressions and tone of speech have been previously considered for emotion recognition, yet they have the drawback of being easily manipulated by subjects to mask their true emotions. Electroencephalography (EEG) has emerged as a reliable and cost-effective method to detect true human emotions. Recently, huge research effort has been put to develop efficient wearable EEG devices to be used by consumers in out of the lab scenarios. In this work, a subject-dependent emotional valence recognition method is implemented that is intended for utilization in emotion AI applications. Time and frequency features were computed from a single time series derived from the Fp1 and Fp2 channels. Several analyses were performed on the strongest valence emotions to determine the most relevant features, frequency bands, and EEG timeslots using the benchmark DEAP dataset. Binary classification experiments resulted in an accuracy of 97.42% using the alpha band, by that outperforming several approaches from literature by ~3–22%. Multiclass classification gave an accuracy of 95.0%. Feature computation and classification required less than 0.1 s. The proposed method thus has the advantage of reduced computational complexity as, unlike most methods in the literature, only two EEG channels were considered. In addition, minimal features concluded from the thorough analyses conducted in this study were used to achieve state-of-the-art performance. The implemented EEG emotion recognition method thus has the merits of being reliable and easily reproducible, making it well-suited for wearable EEG devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
执念完成签到 ,获得积分10
3秒前
4秒前
12秒前
13秒前
chenjzhuc应助kelvin采纳,获得150
14秒前
Hi完成签到 ,获得积分10
17秒前
哈哈完成签到 ,获得积分10
18秒前
20秒前
21秒前
顾矜应助xumengsuo采纳,获得10
23秒前
24秒前
Moonpie发布了新的文献求助10
24秒前
心理学小五完成签到,获得积分10
26秒前
27秒前
与月同行完成签到,获得积分10
27秒前
虾虾完成签到 ,获得积分10
30秒前
清樾完成签到 ,获得积分10
32秒前
32秒前
coke发布了新的文献求助10
32秒前
SciGPT应助胡质斌采纳,获得10
32秒前
Wang1991完成签到,获得积分10
33秒前
我睡觉不会困12138完成签到 ,获得积分10
33秒前
35秒前
lin.xy完成签到,获得积分10
36秒前
领导范儿应助刘刘采纳,获得10
37秒前
网上飞发布了新的文献求助10
37秒前
wiwia完成签到,获得积分10
39秒前
feng发布了新的文献求助10
40秒前
kw98完成签到 ,获得积分10
43秒前
chenlc971125完成签到 ,获得积分10
44秒前
孙明浩完成签到 ,获得积分10
47秒前
久9完成签到 ,获得积分10
47秒前
Yu完成签到 ,获得积分10
47秒前
雪生在无人荒野完成签到,获得积分10
49秒前
49秒前
彭于晏应助心理学小五采纳,获得10
50秒前
网上飞完成签到,获得积分10
51秒前
52秒前
胡质斌发布了新的文献求助10
54秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968154
求助须知:如何正确求助?哪些是违规求助? 3513149
关于积分的说明 11166686
捐赠科研通 3248410
什么是DOI,文献DOI怎么找? 1794206
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629