已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DSHFNet: Dynamic Scale Hierarchical Fusion Network Based on Multiattention for Hyperspectral Image and LiDAR Data Classification

计算机科学 特征提取 人工智能 模式识别(心理学) 特征(语言学) 激光雷达 比例(比率) 高光谱成像 缩放空间 图像融合 传感器融合 融合 土地覆盖 遥感 数据挖掘 图像处理 图像(数学) 土地利用 地理 工程类 哲学 语言学 土木工程 地图学
作者
Yining Feng,Liyang Song,Lu Wang,Xianghai Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:15
标识
DOI:10.1109/tgrs.2023.3311535
摘要

With the continuous improvement of satellite sensor performance, it is becoming easier to obtain different types of remote sensing (RS) data from multiple sensors, and the fusion of hyperspectral (HS) images and light detection and ranging (LiDAR) for land use/land cover classification has become a research hotspot. However, the current mainstream methods still have defects in feature extraction and feature fusion. In the feature extraction stage, previous methods usually use a single-scale patch as input and a fixed convolution kernel for feature extraction, which makes it difficult to extract features in line with different land cover types at the same time and to obtain high-quality features. Although multi-scale feature extraction can solve the one-sidedness problem of single-scale features, it also brings the challenge of high-dimensional multi-scale features. In the feature fusion stage, the current fusion methods are relatively simple. Therefore, we propose a dynamic scale hierarchical fusion network (DSHFNet) for fusion classification of HS images and LiDAR data. By calculating the similarity in the scale space and judging the information at different scales through the threshold value, the appropriate scale features are dynamically selected, the small-scale features are integrated into the large-scale features, and the dimensionality of the features is reduced. This method solves the unreliability problem of single-scale features and the high dimension problem of multi-scale features. In the feature fusion process, different attention modules are used for hierarchical fusion, spatial attention modules are used for shallow fusion and joint feature extraction, and modal attention modules are used for deep fusion of joint features and features from different sensors to achieve complete complementarity of features. Experimental evaluations on three real RS datasets demonstrate the superiority of the proposed method compared to existing methods. The source code can be downloaded at https://github.com/SYFYN0317/DSHFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
冷静新烟完成签到,获得积分20
7秒前
努力搞科研完成签到,获得积分10
8秒前
白瓜完成签到 ,获得积分10
9秒前
娜娜发布了新的文献求助10
10秒前
万能图书馆应助machenchen采纳,获得10
13秒前
souther完成签到,获得积分0
14秒前
Ava应助小八路采纳,获得10
16秒前
lmm完成签到,获得积分10
22秒前
阿鑫完成签到 ,获得积分10
22秒前
善学以致用应助冷酸灵采纳,获得10
24秒前
24秒前
25秒前
翻译度完成签到,获得积分10
28秒前
YULIAN发布了新的文献求助10
30秒前
聪明勇敢有力气完成签到 ,获得积分10
30秒前
100完成签到,获得积分10
32秒前
32秒前
35秒前
田様应助西津渡采纳,获得10
36秒前
37秒前
37秒前
37秒前
38秒前
39秒前
冷酸灵发布了新的文献求助10
39秒前
zyx发布了新的文献求助10
40秒前
惊奇先生1发布了新的文献求助10
40秒前
麦子要当写手完成签到,获得积分10
42秒前
含蓄初之发布了新的文献求助10
43秒前
李敏之完成签到 ,获得积分10
45秒前
艾艾发布了新的文献求助10
45秒前
47秒前
小沈发布了新的文献求助10
53秒前
gwenjing完成签到,获得积分10
53秒前
小蘑菇应助娜娜采纳,获得10
54秒前
59秒前
shl发布了新的文献求助10
1分钟前
短巷完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555627
求助须知:如何正确求助?哪些是违规求助? 3131330
关于积分的说明 9390563
捐赠科研通 2830968
什么是DOI,文献DOI怎么找? 1556243
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803