X-LDA: An interpretable and knowledge-informed heterogeneous graph learning framework for LncRNA-disease association prediction

可解释性 计算机科学 图形 机器学习 人工智能 数据挖掘 理论计算机科学
作者
Yangkun Cao,Jun Xiao,Nan Sheng,Yinwei Qu,Sheng Wang,Chang Sun,Xuechen Mu,Zhenyu Huang,Xuan Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107634-107634 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107634
摘要

The identification of disease-related long noncoding RNAs (lncRNAs) is beneficial to unravel the intricacies of gene expression regulation and epigenetic signatures. Computational methods provide a cost-effective means to explore lncRNA-disease associations (LDAs). However, these methods often lack interpretability, leaving their predictions less convincing to biological and medical researchers. We propose an interpretable and knowledge-informed heterogeneous graph learning framework based on graph patch convolution and integrated gradients to predict LDAs and provides intuitive explanations for its predictions, called X-LDA. The heterogeneous graph is the foundation of the predictions of LDAs, we construct the knowledge-informed heterogeneous graph including LDAs drawn from biological experiments, lncRNA similarities rooted in gene sequences, disease similarities constructed based on disease categorizations. To integrate diverse biological premises and facilitate interpretability, we define nine distinct graph patch types, which encapsulate essential topological relationships within lncRNA-disease node pairs. X-LDA is designed to employ parameter sharing and multi-convolution kernels to grasp common and multiple perspectives of the graph patches, respectively. This approach culminates in the fusion of various semantic information into context embeddings. These post-hoc explanations hinge on graph patch features and integrated gradients, shedding light on the underlying factors driving predictions. Cross validation experiment on the dataset curated from databases and literatures demonstrates that the superior performance of X-LDA in comparison to nine state-of-the-art methods of three categories. X-LDA achieves a larger average area under the receiver operating curve 0.9891 (by at least 6.68%), and a larger average area under the precision–recall curve 0.7907 (by at least 23.2%) than competitive methods. The results of our well-designed ablation and interpretability experiments and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrate X-LDA's robustness, learnability, predictability, and interpretability. The applicability of X-LDA is also demonstrated through a case study involving the investigation of associated lncRNAs in prostate cancer, colorectal cancer, and breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致的泥猴桃完成签到,获得积分10
1秒前
1秒前
1秒前
LuoYixiang发布了新的文献求助10
2秒前
2秒前
Henry完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助刘帅帅采纳,获得10
4秒前
危机的毛衣完成签到,获得积分10
6秒前
思源应助若水采纳,获得10
6秒前
灼灼朗朗发布了新的文献求助10
7秒前
Binbin完成签到 ,获得积分10
7秒前
yan123完成签到 ,获得积分10
8秒前
8秒前
9秒前
清脆的大开完成签到,获得积分10
10秒前
Aoops发布了新的文献求助10
11秒前
Yana发布了新的文献求助80
12秒前
13秒前
善良的糖豆完成签到,获得积分20
13秒前
13秒前
13秒前
调研昵称发布了新的文献求助10
14秒前
义气访曼应助嘻嘻采纳,获得10
15秒前
15秒前
西蓝花香菜完成签到 ,获得积分10
16秒前
ding应助xiaoleeyu采纳,获得10
16秒前
王大禹发布了新的文献求助20
18秒前
Aoops完成签到,获得积分10
18秒前
19秒前
调研昵称发布了新的文献求助10
19秒前
dxx发布了新的文献求助10
19秒前
KaMoria完成签到,获得积分10
20秒前
谷中青完成签到,获得积分10
21秒前
果蝇之母完成签到 ,获得积分10
21秒前
gqjq完成签到,获得积分10
21秒前
21秒前
wy1693207859完成签到,获得积分10
22秒前
朻安完成签到,获得积分10
22秒前
justsoso完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357121
求助须知:如何正确求助?哪些是违规求助? 2980638
关于积分的说明 8695327
捐赠科研通 2662283
什么是DOI,文献DOI怎么找? 1457757
科研通“疑难数据库(出版商)”最低求助积分说明 674851
邀请新用户注册赠送积分活动 665893