X-LDA: An interpretable and knowledge-informed heterogeneous graph learning framework for LncRNA-disease association prediction

可解释性 计算机科学 图形 机器学习 人工智能 数据挖掘 理论计算机科学
作者
Yangkun Cao,Jun Xiao,Nan Sheng,Yinwei Qu,Sheng Wang,Chang Sun,Xuechen Mu,Zhenyu Huang,Xuan Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107634-107634 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107634
摘要

The identification of disease-related long noncoding RNAs (lncRNAs) is beneficial to unravel the intricacies of gene expression regulation and epigenetic signatures. Computational methods provide a cost-effective means to explore lncRNA-disease associations (LDAs). However, these methods often lack interpretability, leaving their predictions less convincing to biological and medical researchers. We propose an interpretable and knowledge-informed heterogeneous graph learning framework based on graph patch convolution and integrated gradients to predict LDAs and provides intuitive explanations for its predictions, called X-LDA. The heterogeneous graph is the foundation of the predictions of LDAs, we construct the knowledge-informed heterogeneous graph including LDAs drawn from biological experiments, lncRNA similarities rooted in gene sequences, disease similarities constructed based on disease categorizations. To integrate diverse biological premises and facilitate interpretability, we define nine distinct graph patch types, which encapsulate essential topological relationships within lncRNA-disease node pairs. X-LDA is designed to employ parameter sharing and multi-convolution kernels to grasp common and multiple perspectives of the graph patches, respectively. This approach culminates in the fusion of various semantic information into context embeddings. These post-hoc explanations hinge on graph patch features and integrated gradients, shedding light on the underlying factors driving predictions. Cross validation experiment on the dataset curated from databases and literatures demonstrates that the superior performance of X-LDA in comparison to nine state-of-the-art methods of three categories. X-LDA achieves a larger average area under the receiver operating curve 0.9891 (by at least 6.68%), and a larger average area under the precision–recall curve 0.7907 (by at least 23.2%) than competitive methods. The results of our well-designed ablation and interpretability experiments and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrate X-LDA's robustness, learnability, predictability, and interpretability. The applicability of X-LDA is also demonstrated through a case study involving the investigation of associated lncRNAs in prostate cancer, colorectal cancer, and breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈梦雨发布了新的文献求助10
1秒前
复杂瑛完成签到,获得积分10
1秒前
1秒前
2秒前
眼睛大世开完成签到 ,获得积分10
2秒前
赤邪发布了新的文献求助10
3秒前
安凉完成签到,获得积分10
3秒前
yangyong完成签到,获得积分10
3秒前
zkkz完成签到,获得积分10
3秒前
打打应助橘子采纳,获得40
3秒前
Jasper应助云澈采纳,获得10
3秒前
隐形曼青应助7777777采纳,获得10
3秒前
科研通AI5应助SCI采纳,获得10
4秒前
芋头不秃头完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
kushdw完成签到,获得积分10
6秒前
傲娇小废柴完成签到,获得积分20
7秒前
TranYan发布了新的文献求助10
7秒前
Sally发布了新的文献求助10
7秒前
sun应助怡然的飞珍采纳,获得20
8秒前
8秒前
9秒前
9秒前
孔雨珍完成签到,获得积分10
10秒前
娇气的春天完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
大模型应助奔奔采纳,获得10
12秒前
13秒前
13秒前
Owen应助西哈哈采纳,获得10
13秒前
Jessie完成签到 ,获得积分10
13秒前
烟花应助孔雨珍采纳,获得10
14秒前
王小志发布了新的文献求助10
14秒前
科研通AI5应助SCI采纳,获得10
14秒前
net完成签到 ,获得积分10
14秒前
Sally完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794