X-LDA: An interpretable and knowledge-informed heterogeneous graph learning framework for LncRNA-disease association prediction

可解释性 计算机科学 图形 机器学习 人工智能 数据挖掘 理论计算机科学
作者
Yangkun Cao,Jun Xiao,Nan Sheng,Yinwei Qu,Sheng Wang,Chang Sun,Xuechen Mu,Zhenyu Huang,Xuan Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107634-107634 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107634
摘要

The identification of disease-related long noncoding RNAs (lncRNAs) is beneficial to unravel the intricacies of gene expression regulation and epigenetic signatures. Computational methods provide a cost-effective means to explore lncRNA-disease associations (LDAs). However, these methods often lack interpretability, leaving their predictions less convincing to biological and medical researchers. We propose an interpretable and knowledge-informed heterogeneous graph learning framework based on graph patch convolution and integrated gradients to predict LDAs and provides intuitive explanations for its predictions, called X-LDA. The heterogeneous graph is the foundation of the predictions of LDAs, we construct the knowledge-informed heterogeneous graph including LDAs drawn from biological experiments, lncRNA similarities rooted in gene sequences, disease similarities constructed based on disease categorizations. To integrate diverse biological premises and facilitate interpretability, we define nine distinct graph patch types, which encapsulate essential topological relationships within lncRNA-disease node pairs. X-LDA is designed to employ parameter sharing and multi-convolution kernels to grasp common and multiple perspectives of the graph patches, respectively. This approach culminates in the fusion of various semantic information into context embeddings. These post-hoc explanations hinge on graph patch features and integrated gradients, shedding light on the underlying factors driving predictions. Cross validation experiment on the dataset curated from databases and literatures demonstrates that the superior performance of X-LDA in comparison to nine state-of-the-art methods of three categories. X-LDA achieves a larger average area under the receiver operating curve 0.9891 (by at least 6.68%), and a larger average area under the precision–recall curve 0.7907 (by at least 23.2%) than competitive methods. The results of our well-designed ablation and interpretability experiments and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrate X-LDA's robustness, learnability, predictability, and interpretability. The applicability of X-LDA is also demonstrated through a case study involving the investigation of associated lncRNAs in prostate cancer, colorectal cancer, and breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小火苗发布了新的文献求助10
2秒前
3秒前
Minn发布了新的文献求助10
4秒前
4秒前
王加通完成签到,获得积分10
5秒前
猪猪hero发布了新的文献求助10
6秒前
南宫初柒完成签到 ,获得积分10
6秒前
7秒前
远方完成签到,获得积分10
8秒前
善良的冷梅完成签到,获得积分10
8秒前
英俊的铭应助小火苗采纳,获得10
9秒前
华半仙发布了新的文献求助10
9秒前
10秒前
leyellows完成签到 ,获得积分10
11秒前
李青函发布了新的文献求助10
16秒前
18秒前
扭扭车发布了新的文献求助10
21秒前
moon完成签到 ,获得积分10
21秒前
22秒前
卑微老大完成签到 ,获得积分10
22秒前
summitekey完成签到 ,获得积分10
22秒前
ZJPPPP完成签到,获得积分10
23秒前
niqi发布了新的文献求助10
23秒前
24秒前
FashionBoy应助zy0411采纳,获得10
29秒前
李田田发布了新的文献求助10
30秒前
快乐马发布了新的文献求助100
31秒前
胡图图完成签到,获得积分0
31秒前
Jasper应助华半仙采纳,获得10
32秒前
Ava应助小闵采纳,获得10
33秒前
花生完成签到 ,获得积分10
34秒前
科研通AI2S应助快乐马采纳,获得10
38秒前
pluto应助扣扣登陆采纳,获得10
38秒前
忐忑的蛋糕完成签到,获得积分10
39秒前
39秒前
42秒前
Owen应助知识探索家采纳,获得10
42秒前
43秒前
SXR完成签到,获得积分10
43秒前
niqi完成签到,获得积分10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324