亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

X-LDA: An interpretable and knowledge-informed heterogeneous graph learning framework for LncRNA-disease association prediction

可解释性 计算机科学 图形 机器学习 人工智能 数据挖掘 理论计算机科学
作者
Yangkun Cao,Jun Xiao,Nan Sheng,Yinwei Qu,Sheng Wang,Chang Sun,Xuechen Mu,Zhenyu Huang,Xuan Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107634-107634 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107634
摘要

The identification of disease-related long noncoding RNAs (lncRNAs) is beneficial to unravel the intricacies of gene expression regulation and epigenetic signatures. Computational methods provide a cost-effective means to explore lncRNA-disease associations (LDAs). However, these methods often lack interpretability, leaving their predictions less convincing to biological and medical researchers. We propose an interpretable and knowledge-informed heterogeneous graph learning framework based on graph patch convolution and integrated gradients to predict LDAs and provides intuitive explanations for its predictions, called X-LDA. The heterogeneous graph is the foundation of the predictions of LDAs, we construct the knowledge-informed heterogeneous graph including LDAs drawn from biological experiments, lncRNA similarities rooted in gene sequences, disease similarities constructed based on disease categorizations. To integrate diverse biological premises and facilitate interpretability, we define nine distinct graph patch types, which encapsulate essential topological relationships within lncRNA-disease node pairs. X-LDA is designed to employ parameter sharing and multi-convolution kernels to grasp common and multiple perspectives of the graph patches, respectively. This approach culminates in the fusion of various semantic information into context embeddings. These post-hoc explanations hinge on graph patch features and integrated gradients, shedding light on the underlying factors driving predictions. Cross validation experiment on the dataset curated from databases and literatures demonstrates that the superior performance of X-LDA in comparison to nine state-of-the-art methods of three categories. X-LDA achieves a larger average area under the receiver operating curve 0.9891 (by at least 6.68%), and a larger average area under the precision–recall curve 0.7907 (by at least 23.2%) than competitive methods. The results of our well-designed ablation and interpretability experiments and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrate X-LDA's robustness, learnability, predictability, and interpretability. The applicability of X-LDA is also demonstrated through a case study involving the investigation of associated lncRNAs in prostate cancer, colorectal cancer, and breast cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
江淮左发布了新的文献求助30
32秒前
andrele发布了新的文献求助30
41秒前
江淮左完成签到,获得积分20
44秒前
58秒前
1分钟前
r1915发布了新的文献求助20
1分钟前
1分钟前
852应助江淮左采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
月满西楼完成签到,获得积分10
2分钟前
聂聂完成签到,获得积分20
2分钟前
2分钟前
连安阳完成签到,获得积分10
3分钟前
聂聂发布了新的文献求助10
3分钟前
4分钟前
4分钟前
FXe发布了新的文献求助30
4分钟前
李健的小迷弟应助小满采纳,获得10
4分钟前
小马甲应助FXe采纳,获得30
4分钟前
4分钟前
小满发布了新的文献求助10
4分钟前
IXF完成签到,获得积分10
4分钟前
小葛完成签到,获得积分10
4分钟前
上官若男应助小满采纳,获得10
4分钟前
4分钟前
彭晓雅发布了新的文献求助10
5分钟前
5分钟前
5分钟前
科研通AI6应助Positive采纳,获得10
5分钟前
FXe发布了新的文献求助30
5分钟前
小野菌发布了新的文献求助10
5分钟前
领导范儿应助彭晓雅采纳,获得10
5分钟前
FXe完成签到,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
在水一方应助小野菌采纳,获得10
5分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5579231
求助须知:如何正确求助?哪些是违规求助? 4663908
关于积分的说明 14748584
捐赠科研通 4605195
什么是DOI,文献DOI怎么找? 2527227
邀请新用户注册赠送积分活动 1496805
关于科研通互助平台的介绍 1466053