Skeletal Spatial-Temporal Semantics Guided Homogeneous-Heterogeneous Multimodal Network for Action Recognition

计算机科学 人工智能 动作识别 RGB颜色模型 模式识别(心理学) 计算机视觉 班级(哲学)
作者
Chenwei Zhang,Yuxuan Hu,Min Yang,Chengming Li,Xiping Hu
标识
DOI:10.1145/3581783.3612560
摘要

Action recognition research has gained significant attention with two dominant unimodal approaches: skeleton-based and RGB video-based. While the former is known for its robustness in complex backgrounds, the latter provides rich environmental information useful for context-based analysis. However, the fusion of these two modalities remains an open challenge. In this paper, we propose a Spatial Transformer & Selective Temporal encoder (ST&ST) for skeleton-based action recognition by constructing two modules: Reranking-Enhanced Dynamic Mask Transformer (RE-DMT) and Selective Kernel Temporal Convolution (SK-TC). The RE-DMT captures global spatial features, while the dynamic mask strategy and reranking strategy reduce redundancy. The SK-TC captures both long-term and short-term temporal features and enables adaptive fusion. Furthermore, in two phases, we propose a Homogeneous-Heterogeneous Multimodal Network (HHMNet) for multi-modal action recognition. In the first phase, contrastive learning is employed to achieve implicit semantic fusion within the four homogeneous skeletal modalities (joint, bone, etc.). In the second phase, the fusion of heterogeneous modalities (skeleton & RGB video) is carried out at three levels: model, feature, and decision. At the model level, the powerful skeleton-based model from the previous phase provides explicit attention guidance to the RGB video-based model. At the feature level, multi-part contrastive learning enables semantic distillation between heterogeneous modalities. At the decision level, ensemble learning combines outputs for final action recognition. We evaluate our proposed ST&ST guided HHMNet on NTU RGB+D 60 & 120 and NW-UCLA datasets and demonstrate that it achieves state-of-the-art performance in both skeleton-based and multi-modal action recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
我唉科研完成签到,获得积分10
3秒前
英姑应助饭小心采纳,获得10
3秒前
JJDS发布了新的文献求助10
7秒前
8秒前
8秒前
12秒前
大个应助JJDS采纳,获得10
13秒前
无心的荆发布了新的文献求助10
13秒前
14秒前
慕青应助琪凯定理采纳,获得10
14秒前
YJ完成签到,获得积分10
15秒前
犹豫小懒猪完成签到 ,获得积分20
17秒前
饭小心发布了新的文献求助10
18秒前
18秒前
21秒前
顾矜应助普普采纳,获得10
21秒前
22秒前
jiangshi90发布了新的文献求助10
23秒前
cathy-w完成签到,获得积分10
23秒前
Onlyyou完成签到 ,获得积分10
24秒前
25秒前
27秒前
lanting完成签到,获得积分10
27秒前
发论文完成签到 ,获得积分10
29秒前
zwz发布了新的文献求助10
30秒前
ding应助why采纳,获得10
31秒前
34秒前
zyq发布了新的文献求助10
38秒前
39秒前
坚强的纸飞机完成签到,获得积分10
39秒前
温婉的凡阳完成签到,获得积分10
42秒前
DrWho发布了新的文献求助10
44秒前
44秒前
45秒前
bkagyin应助姿势采纳,获得10
48秒前
Dr.不是Doc发布了新的文献求助10
48秒前
49秒前
安白完成签到 ,获得积分10
49秒前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371589
求助须知:如何正确求助?哪些是违规求助? 2989704
关于积分的说明 8736799
捐赠科研通 2672949
什么是DOI,文献DOI怎么找? 1464289
科研通“疑难数据库(出版商)”最低求助积分说明 677484
邀请新用户注册赠送积分活动 668822