Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
五小完成签到 ,获得积分10
刚刚
happy完成签到,获得积分10
1秒前
坚强水杯完成签到,获得积分10
1秒前
mhpvv发布了新的文献求助10
1秒前
1秒前
小飞侠来咯完成签到,获得积分10
1秒前
Sesame完成签到,获得积分10
1秒前
yeye发布了新的文献求助30
2秒前
3秒前
4秒前
ww发布了新的文献求助10
4秒前
阿九发布了新的文献求助10
4秒前
热爱工作的魂淡完成签到,获得积分10
5秒前
科研阳完成签到,获得积分10
5秒前
5秒前
多看看发布了新的文献求助10
5秒前
lsn发布了新的文献求助10
6秒前
Owen应助四叶草采纳,获得10
7秒前
小池完成签到 ,获得积分10
8秒前
8秒前
无花果应助WNL采纳,获得10
8秒前
善学以致用应助HCT采纳,获得10
9秒前
思源应助雷雷采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
moyu37发布了新的文献求助10
11秒前
珍珠完成签到,获得积分10
11秒前
小郭发布了新的文献求助10
11秒前
浮浮世世应助kathy采纳,获得30
12秒前
12秒前
12秒前
12秒前
AJ完成签到,获得积分10
13秒前
默默莫莫完成签到 ,获得积分10
13秒前
ChaosTenet完成签到,获得积分10
14秒前
曾zzzz发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802