已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moiaoh完成签到,获得积分10
1秒前
1秒前
3秒前
7秒前
科研通AI5应助啾啾采纳,获得10
9秒前
胡一刀完成签到,获得积分10
10秒前
dreamboat完成签到,获得积分10
11秒前
11秒前
梁梁完成签到 ,获得积分10
13秒前
13秒前
沉静乾发布了新的文献求助10
13秒前
14秒前
16秒前
梁海萍发布了新的文献求助10
16秒前
EKo完成签到,获得积分10
17秒前
情怀应助zjx采纳,获得10
17秒前
畅快枕头完成签到 ,获得积分0
18秒前
SciHub完成签到 ,获得积分10
18秒前
草莓熊1215完成签到 ,获得积分10
19秒前
彭于晏应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
20秒前
爆米花应助科研通管家采纳,获得30
20秒前
李文豪发布了新的文献求助10
20秒前
唐泽雪穗发布了新的文献求助100
22秒前
23秒前
山山完成签到 ,获得积分10
26秒前
26秒前
哲000完成签到 ,获得积分10
27秒前
土豆小胖子完成签到,获得积分10
27秒前
CC完成签到 ,获得积分10
28秒前
zjx完成签到,获得积分10
28秒前
29秒前
SCINEXUS完成签到,获得积分0
31秒前
吴雨茜发布了新的文献求助10
34秒前
linkman发布了新的文献求助10
34秒前
胖莹完成签到 ,获得积分10
35秒前
36秒前
研友_8yNl3L完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925756
求助须知:如何正确求助?哪些是违规求助? 4195911
关于积分的说明 13031268
捐赠科研通 3967492
什么是DOI,文献DOI怎么找? 2174627
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101628