已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崔灿完成签到 ,获得积分10
1秒前
hy完成签到 ,获得积分10
4秒前
深情安青应助小九九采纳,获得10
5秒前
akun完成签到,获得积分10
6秒前
11秒前
可爱的函函应助yiyi采纳,获得10
11秒前
11秒前
魏凯源完成签到,获得积分10
13秒前
Orange应助晴子采纳,获得10
15秒前
alxat发布了新的文献求助10
15秒前
敬业乐群完成签到,获得积分10
17秒前
无花果应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
Tanya47应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Rdx发布了新的文献求助10
18秒前
19秒前
镜小小静发布了新的文献求助10
20秒前
鸣蜩阿六完成签到,获得积分10
22秒前
小九九发布了新的文献求助10
22秒前
23秒前
24秒前
27秒前
28秒前
29秒前
壮观沉鱼完成签到 ,获得积分10
32秒前
晴子发布了新的文献求助10
32秒前
移动马桶完成签到 ,获得积分10
33秒前
北觅完成签到 ,获得积分10
34秒前
wqh完成签到,获得积分10
34秒前
充电宝应助镜小小静采纳,获得10
36秒前
36秒前
morena发布了新的文献求助10
38秒前
小太阳发布了新的文献求助10
38秒前
39秒前
舒心小海豚完成签到 ,获得积分10
41秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663955
求助须知:如何正确求助?哪些是违规求助? 4855050
关于积分的说明 15106557
捐赠科研通 4822312
什么是DOI,文献DOI怎么找? 2581389
邀请新用户注册赠送积分活动 1535540
关于科研通互助平台的介绍 1493787