Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助嘿嘿啊哈采纳,获得10
刚刚
刚刚
淡淡化蛹发布了新的文献求助30
1秒前
科研一号发布了新的文献求助10
1秒前
努力学习完成签到,获得积分10
2秒前
没有下不到的文献完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
烟花应助bmj采纳,获得10
3秒前
大模型应助坦率晓霜采纳,获得10
4秒前
4秒前
4秒前
pluto应助ichia采纳,获得10
4秒前
wwwwww关注了科研通微信公众号
5秒前
7秒前
7秒前
8秒前
李爱国应助熬夜拜拜采纳,获得10
8秒前
煎饼狗子发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
MO发布了新的文献求助10
11秒前
11秒前
芪苓关注了科研通微信公众号
12秒前
老实的百招完成签到,获得积分10
12秒前
xwt发布了新的文献求助10
13秒前
13秒前
张巨锋发布了新的文献求助10
14秒前
jiabangou发布了新的文献求助10
14秒前
16秒前
16秒前
乐乐应助Wguan采纳,获得10
16秒前
16秒前
完美世界应助Archer采纳,获得10
16秒前
17秒前
LLSSLL完成签到,获得积分10
17秒前
崔宇完成签到,获得积分10
18秒前
18秒前
明亮的海冬完成签到,获得积分10
19秒前
嘻嘻哈哈完成签到,获得积分10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186