Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦桃完成签到 ,获得积分10
刚刚
徐什么宝发布了新的文献求助10
1秒前
刻苦向梦发布了新的文献求助10
1秒前
romeo发布了新的文献求助10
2秒前
2秒前
受伤白安发布了新的文献求助10
2秒前
JamesPei应助火速阿百川采纳,获得10
3秒前
丘比特应助liuyu0209采纳,获得10
3秒前
不安青牛应助玛卡采纳,获得10
4秒前
5秒前
5秒前
6秒前
852应助科研通管家采纳,获得30
7秒前
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
NexusExplorer应助舍我其谁采纳,获得10
8秒前
金金发布了新的文献求助10
8秒前
隐形曼青应助李昕123采纳,获得10
9秒前
蓬蓬发布了新的文献求助10
9秒前
10秒前
hexy629发布了新的文献求助10
11秒前
123456完成签到,获得积分10
11秒前
11秒前
Tomyyh发布了新的文献求助10
12秒前
123456发布了新的文献求助10
12秒前
15秒前
15秒前
kei发布了新的文献求助10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781