Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助甜甜青旋采纳,获得10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
Deathroid完成签到,获得积分10
2秒前
时荒发布了新的文献求助10
2秒前
小米完成签到,获得积分10
2秒前
3秒前
灵巧的斓完成签到,获得积分10
3秒前
4秒前
Aryac完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助Ma采纳,获得10
5秒前
遲悟篤行完成签到,获得积分10
6秒前
尹雪儿完成签到,获得积分10
6秒前
充电宝应助qq采纳,获得10
7秒前
AhhHuang应助容若采纳,获得10
8秒前
8秒前
科目三应助炙热的平灵采纳,获得10
8秒前
liuanqi发布了新的文献求助10
8秒前
9秒前
9秒前
科研通AI6应助文乐采纳,获得10
9秒前
安安安完成签到,获得积分10
10秒前
10秒前
Unicorn发布了新的文献求助10
10秒前
斯文败类应助清浅采纳,获得30
10秒前
10秒前
小二郎应助yyj采纳,获得10
11秒前
Aryac发布了新的文献求助10
11秒前
11秒前
12秒前
Pothos应助YAN采纳,获得30
13秒前
gzhoax应助山山而川采纳,获得30
13秒前
科研通AI6应助liam采纳,获得10
13秒前
烟里戏发布了新的文献求助10
13秒前
沙糖桔完成签到,获得积分10
13秒前
14秒前
Sunday给Sunday的求助进行了留言
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041