亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kototo完成签到,获得积分10
11秒前
我是老大应助危机的雪旋采纳,获得10
29秒前
Hillson完成签到,获得积分10
30秒前
42秒前
49秒前
1分钟前
日富一日发布了新的文献求助10
1分钟前
zuihaodewomen完成签到 ,获得积分10
2分钟前
Phil完成签到 ,获得积分10
2分钟前
刘天宇完成签到 ,获得积分10
2分钟前
Sue完成签到 ,获得积分10
2分钟前
blueskyzhi完成签到,获得积分10
2分钟前
CodeCraft应助优秀的行云采纳,获得10
3分钟前
ysss0831完成签到,获得积分10
3分钟前
3分钟前
优秀的行云完成签到,获得积分10
3分钟前
zilt1109发布了新的文献求助10
3分钟前
赘婿应助Queena采纳,获得10
3分钟前
3分钟前
3分钟前
jfc完成签到 ,获得积分10
3分钟前
Queena发布了新的文献求助10
3分钟前
鲍惜寒完成签到 ,获得积分20
4分钟前
鲍惜寒发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
Becky完成签到 ,获得积分10
4分钟前
白华苍松发布了新的文献求助20
5分钟前
yhw完成签到,获得积分20
5分钟前
5分钟前
yhw发布了新的文献求助10
5分钟前
开放蓝天应助白华苍松采纳,获得10
5分钟前
Hello应助yhw采纳,获得10
5分钟前
小丸子和zz完成签到 ,获得积分10
5分钟前
JoeyJin完成签到,获得积分10
6分钟前
nuoberry完成签到,获得积分10
6分钟前
夜雨完成签到,获得积分10
6分钟前
花陵完成签到 ,获得积分10
6分钟前
Ethan完成签到,获得积分10
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584659
求助须知:如何正确求助?哪些是违规求助? 4668590
关于积分的说明 14771485
捐赠科研通 4612783
什么是DOI,文献DOI怎么找? 2530133
邀请新用户注册赠送积分活动 1499067
关于科研通互助平台的介绍 1467499