Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助Guoyeye采纳,获得10
2秒前
鱼啦啦发布了新的文献求助10
3秒前
加油完成签到,获得积分10
5秒前
ROS发布了新的文献求助10
7秒前
当女遇到乔完成签到 ,获得积分10
7秒前
wsiiiqiii发布了新的文献求助30
7秒前
8秒前
Li发布了新的文献求助10
8秒前
完美世界应助daiyu采纳,获得10
11秒前
弈咖啡完成签到,获得积分10
13秒前
劉平果完成签到 ,获得积分10
16秒前
鱼啦啦完成签到,获得积分10
17秒前
拉长的问凝给拉长的问凝的求助进行了留言
20秒前
21秒前
fr完成签到,获得积分20
21秒前
田様应助Li采纳,获得10
21秒前
22秒前
捱小秋完成签到,获得积分10
22秒前
丹霞发布了新的文献求助10
23秒前
清风完成签到,获得积分10
25秒前
29秒前
史迪仔发布了新的文献求助20
29秒前
wsiiiqiii完成签到,获得积分10
29秒前
32秒前
白桦林泪发布了新的文献求助10
32秒前
自然从寒发布了新的文献求助10
33秒前
三号技师完成签到,获得积分10
34秒前
35秒前
快乐科研完成签到,获得积分20
36秒前
开朗向真完成签到,获得积分10
36秒前
务实的怜阳完成签到,获得积分10
38秒前
犹豫梦旋发布了新的文献求助10
39秒前
科研3c发布了新的文献求助10
42秒前
46秒前
犹豫梦旋完成签到,获得积分10
47秒前
科研3c完成签到,获得积分10
49秒前
51秒前
liu应助pigff采纳,获得80
51秒前
51秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164206
求助须知:如何正确求助?哪些是违规求助? 2814933
关于积分的说明 7907108
捐赠科研通 2474500
什么是DOI,文献DOI怎么找? 1317542
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228