Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DKX完成签到 ,获得积分10
1秒前
YY完成签到 ,获得积分10
2秒前
molik发布了新的文献求助30
3秒前
3秒前
淡淡土豆应助Eiland采纳,获得10
3秒前
大抵是能上岸的完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
传奇3应助ti采纳,获得10
5秒前
一位名圆发布了新的文献求助10
6秒前
7秒前
所所应助LEE采纳,获得10
7秒前
Akim应助dummy采纳,获得10
9秒前
利奥完成签到 ,获得积分10
9秒前
penguin发布了新的文献求助10
10秒前
黑炭球完成签到,获得积分10
11秒前
12秒前
顾矜应助mm采纳,获得10
12秒前
阿冰完成签到,获得积分10
12秒前
NexusExplorer应助俊逸成危采纳,获得10
13秒前
超威蓝猫完成签到,获得积分10
13秒前
13秒前
李健的小迷弟应助臣不穀采纳,获得20
13秒前
13秒前
无奈又晴关注了科研通微信公众号
16秒前
17秒前
鲸鱼发布了新的文献求助10
17秒前
18秒前
19秒前
春意盎然完成签到,获得积分10
19秒前
美好谷芹完成签到,获得积分20
19秒前
晚星发布了新的文献求助20
19秒前
科研通AI6应助zydT采纳,获得10
19秒前
19秒前
20秒前
子夜完成签到,获得积分10
21秒前
21秒前
21秒前
111完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521585
求助须知:如何正确求助?哪些是违规求助? 4612927
关于积分的说明 14536362
捐赠科研通 4550430
什么是DOI,文献DOI怎么找? 2493661
邀请新用户注册赠送积分活动 1474837
关于科研通互助平台的介绍 1446233