Feature incremental learning with causality

特征选择 特征(语言学) 计算机科学 人工智能 逻辑回归 一致性(知识库) 机器学习 回归 因果关系(物理学) 数据挖掘 算法 模式识别(心理学) 数学 统计 哲学 语言学 物理 量子力学
作者
Haotian Ni,Shilin Gu,Ruidong Fan,Chenping Hou
出处
期刊:Pattern Recognition [Elsevier]
卷期号:146: 110033-110033 被引量:4
标识
DOI:10.1016/j.patcog.2023.110033
摘要

With the emerging of new data collection ways, the features are incremental and accumulated gradually. Due to the expansion of feature spaces, it is more common that there are unknown biases between the distribution of training and testing datasets. It is known as the unknown data selection bias, which belongs to the learning scenario with non-i.i.d samples. The performance of traditional approaches, which need the i.i.d. assumption, will be aggravated seriously. How to design an algorithm to address the problem of data selection bias in this feature incremental scenario is crucial but rarely studied. In this paper, we propose a feature incremental classification algorithm with causality. Firstly, we embed the confounding variable balance algorithm in causal learning into the prediction modeling and utilize the logical regression algorithm with balancing regular terms as a baseline. Then, to satisfy the special requirement of feature increment, we design a new regularizer, which maintains the consistency of the regression coefficients between the data in the current and previous stages. It retains the correlation between the old features and labels. Finally, we propose the Multiple Balancing Logistic Regression model (MBRLR) to jointly optimize the balancing regularizer and weighted logistic regression model with multiple feature sets. We also present theoretical results to show that our proposed algorithm can make precise and stable predictions. Besides, the numerical results also demonstrate that our MBRLR algorithm is superior to other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮商发布了新的文献求助10
刚刚
宋凤娇完成签到,获得积分10
刚刚
斯文败类应助1tap采纳,获得10
1秒前
2秒前
Doc_d发布了新的文献求助10
3秒前
外向樱发布了新的文献求助10
3秒前
3秒前
3秒前
25_1发布了新的文献求助10
4秒前
勤恳的人雄完成签到,获得积分10
5秒前
vetzlk完成签到 ,获得积分10
5秒前
5秒前
迟迟发布了新的文献求助10
7秒前
冷傲的广缘完成签到,获得积分10
8秒前
8秒前
虎虎完成签到,获得积分10
8秒前
二二二发布了新的文献求助10
9秒前
Doc_d完成签到,获得积分10
10秒前
勤恳雅莉举报北冥鱼求助涉嫌违规
11秒前
瞬间完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
沉默的可乐完成签到 ,获得积分20
13秒前
孝顺的宫关注了科研通微信公众号
14秒前
NexusExplorer应助二二二采纳,获得10
15秒前
15秒前
17秒前
电催化丁真完成签到,获得积分10
17秒前
科研通AI6应助幽默的南蕾采纳,获得10
17秒前
咕噜噜发布了新的文献求助10
18秒前
姚盈盈发布了新的文献求助10
18秒前
大模型应助Jonathan采纳,获得10
18秒前
夏鹿完成签到,获得积分10
19秒前
19秒前
汉堡包应助一天一篇sci采纳,获得10
20秒前
tianer发布了新的文献求助10
20秒前
21秒前
小迪发布了新的文献求助10
22秒前
搜集达人应助迟迟采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571861
求助须知:如何正确求助?哪些是违规求助? 4657052
关于积分的说明 14718892
捐赠科研通 4597857
什么是DOI,文献DOI怎么找? 2523425
邀请新用户注册赠送积分活动 1494258
关于科研通互助平台的介绍 1464345