Multi-Level Medical Image Segmentation Network Based on Multi-Scale and Context Information Fusion Strategy

计算机科学 分割 人工智能 编码器 棱锥(几何) 特征(语言学) 图像分割 计算机视觉 模式识别(心理学) 背景(考古学) 数学 操作系统 生物 哲学 语言学 古生物学 几何学
作者
Dayu Tan,Zhiyuan Yao,Xin Peng,Haiping Ma,Yike Dai,Yansen Su,Weimin Zhong
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 474-487
标识
DOI:10.1109/tetci.2023.3306250
摘要

Accurate segmentation of human tissue structure from medical images is one of the critical links in medical image diagnosis. However, due to the medical image scale of different tissues varying significantly and being structurally complex, the low contrast between tissues and background in some medical imaging makes it challenging to identify. The existing models are difficult to extract representative multi-scale features of medical images that cannot accurately segment the organizational structure from the background in low-contrast medical images. To solve these problems, this study presents a scale and context information fusion network structure based on multi-type medical image segmentation (SCIF-Net), which contains three modules: feature pyramid encoder (FPE), multi-scale feature dynamic aggregation (MFDA), and adaptive spatial information fusion (ASIF). We build the FPE module to further enhance the representational ability of the network encoder output feature map at each stage. The MFDA module is used to effectively extract multi-scale information from the encoder output feature map and aggregate multi-scale features. The constructed ASIF module enables the network to selectively concentrate on the vital spatial information in the encoder feature map and merge the decoder feature map semantic information, minimizing background noise influence. Extensive experiments on the retinal segmentation task, gland segmentation task, and femur segmentation task, show that the SCIF-Net network outperforms other advanced methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷静的奇迹完成签到,获得积分10
刚刚
123发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
kingwill给XSY的求助进行了留言
1秒前
LL发布了新的文献求助10
2秒前
2秒前
cy完成签到,获得积分10
3秒前
甜李完成签到 ,获得积分10
3秒前
3秒前
盼盼发布了新的文献求助10
3秒前
3秒前
4秒前
zhuzhihao完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
jjj发布了新的文献求助10
6秒前
丫丫发布了新的文献求助10
6秒前
6秒前
smj发布了新的文献求助10
6秒前
6秒前
可乐完成签到 ,获得积分20
7秒前
Erica发布了新的文献求助20
7秒前
徐biao发布了新的文献求助10
8秒前
可爱冲击发布了新的文献求助10
8秒前
科研通AI2S应助卡卡采纳,获得10
8秒前
ZW完成签到 ,获得积分10
8秒前
Emily发布了新的文献求助10
8秒前
Orange应助wangwangwang采纳,获得10
8秒前
9秒前
zhuzhihao发布了新的文献求助10
9秒前
9秒前
浮生若梦发布了新的文献求助10
9秒前
朱滴滴完成签到,获得积分20
9秒前
领导范儿应助唠叨的无极采纳,获得10
9秒前
幼萱发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559156
求助须知:如何正确求助?哪些是违规求助? 3133718
关于积分的说明 9403929
捐赠科研通 2833973
什么是DOI,文献DOI怎么找? 1557731
邀请新用户注册赠送积分活动 727632
科研通“疑难数据库(出版商)”最低求助积分说明 716383