亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction and effect evaluation of prediction model for red blood cell transfusion requirement in cesarean section based on artificial intelligence

医学 输血 围手术期 血容量 血液管理 人口 外科 麻醉 环境卫生
作者
Hang Chen,Bowei Cao,Jiangcun Yang,Ren He,Xingqiu Xia,Xiaowen Zhang,Wei Qi Yan,Xiaodan Liang,Li Chen
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:23 (1) 被引量:2
标识
DOI:10.1186/s12911-023-02286-1
摘要

This study intends to build an artificial intelligence model for obstetric cesarean section surgery to evaluate the intraoperative blood transfusion volume before operation, and compare the model prediction results with the actual results to evaluate the accuracy of the artificial intelligence prediction model for intraoperative red blood cell transfusion in obstetrics. The advantages and disadvantages of intraoperative blood demand and identification of high-risk groups for blood transfusion provide data support and improvement suggestions for the realization of accurate blood management of obstetric cesarean section patients during the perioperative period.Using a machine learning algorithm, an intraoperative blood transfusion prediction model was trained. The differences between the predicted results and the actual results were compared by means of blood transfusion or not, blood transfusion volume, and blood transfusion volume targeting postoperative hemoglobin (Hb).Area under curve of the model is 0.89. The accuracy of the model for blood transfusion was 96.85%. The statistical standard for the accuracy of the model blood transfusion volume is the calculation of 1U absolute error, the accuracy rate is 86.56%, and the accuracy rate of the blood transfusion population is 45.00%. In the simulation prediction results, 93.67% of the predicted and actual cases in no blood transfusion surgery; 63.45% of the same predicted blood transfusion in blood transfusion surgery, and only 20.00% of the blood transfusion volume is the same.In conclusion, this study used machine learning algorithm to process, analyze and predict the results of a large sample of cesarean section clinical data, and found that the important predictors of blood transfusion during cesarean section included preoperative RBC, surgical method, the site of surgery, coagulation-related indicators, and other factors. At the same time, it was found that the overall accuracy of the AI model was higher than actual blood using. Although the prediction of blood transfusion volume was not well matched with the actual blood using, the model provided a perspective of preoperative identification of high blood transfusion risks. The results can provide good auxiliary decision support for preoperative evaluation of obstetric cesarean section, and then promote the realization of accurate perioperative blood management for obstetric cesarean section patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Celeste采纳,获得10
刚刚
Candices完成签到,获得积分10
2秒前
细心八宝粥完成签到 ,获得积分10
3秒前
11秒前
Zeeki完成签到 ,获得积分10
13秒前
lllllllllzx完成签到,获得积分10
14秒前
ceeray23发布了新的文献求助200
18秒前
Pikaluo完成签到,获得积分10
19秒前
希望天下0贩的0应助tt采纳,获得10
19秒前
26秒前
28秒前
顺颂时祺发布了新的文献求助10
31秒前
34秒前
1分钟前
FG发布了新的文献求助10
1分钟前
1分钟前
1分钟前
tt完成签到,获得积分20
1分钟前
tt发布了新的文献求助10
1分钟前
ceeray23发布了新的文献求助30
1分钟前
1分钟前
ho应助科研通管家采纳,获得10
1分钟前
ho应助科研通管家采纳,获得10
1分钟前
kentonchow应助气945采纳,获得10
1分钟前
1分钟前
学术小菜鸟完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
洁净的千凡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Alice发布了新的文献求助30
2分钟前
2分钟前
2分钟前
Shawn发布了新的文献求助10
2分钟前
Alice完成签到,获得积分20
2分钟前
cao_bq完成签到,获得积分10
2分钟前
2分钟前
2分钟前
genius_yue发布了新的文献求助30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376400
求助须知:如何正确求助?哪些是违规求助? 4501498
关于积分的说明 14013106
捐赠科研通 4409293
什么是DOI,文献DOI怎么找? 2422135
邀请新用户注册赠送积分活动 1414947
关于科研通互助平台的介绍 1391827