STS-DGNN: Vehicle Trajectory Prediction via Dynamic Graph Neural Network With Spatial–Temporal Synchronization

计算机科学 人工智能 弹道 图形 卷积神经网络 可视化 特征(语言学) 人工神经网络 模式识别(心理学) 理论计算机科学 天文 语言学 哲学 物理
作者
F. Li,Chun-Yang Zhang,C. L. Philip Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:7
标识
DOI:10.1109/tim.2023.3307179
摘要

Accurate prediction of vehicle trajectories is crucial to the safety and comfort of autonomous vehicles. Although several graph-based models have exhibited substantial progress in acquiring spatiotemporal dependencies among vehicles in the driving environment, the potential for additional exploration in this domain persists. The main reason is that they concentrated on independently capturing the spatial relations and temporal dependencies, neglecting to incorporate the temporal feature into the spatial feature for co-training, which limits their ability to yield satisfactory predictive accuracy. Typically, spatial and temporal correlations are coupled and should be modeled jointly. Inspired by this, a novel dynamic graph neural network with spatial-temporal synchronization (STS-DGNN) for vehicle trajectory prediction is proposed, which constructs the driving scene as dynamic graphs and can jointly extract spatial-temporal features. Specifically, low-order and high-order dynamics of vehicle trajectories are considered collaboratively in a one-stage framework rather than independently modeling the spatial relationship and temporal correlations of vehicles in two-stage models. The proposed model also considers the dynamic nature of graph sequence by utilizing gate recurrent unit (GRU) to update the graph neural network (GNN) parameters dynamically. The spatial-temporal features are subsequently conveyed to convolutional neural networks (CNN) and processed by a multi-layer perceptron (MLP) to generate the ultimate trajectories. Finally, to illustrate the effectiveness of the STS-DGNN model, the model is assessed on three well-known datasets, namely highD, EWAP and UCY. The results confirm that our model performs better at making predictions than cutting-edge models. The visualization results intuitively explain that our method can extract sophisticated and subtle multi-vehicle interactions, resulting in accurate predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助Sera采纳,获得50
1秒前
poblo发布了新的文献求助10
1秒前
娜娜子欧发布了新的文献求助10
2秒前
2秒前
2秒前
yifanchen完成签到,获得积分10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
pluto应助科研通管家采纳,获得50
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
duanhuiyuan应助科研通管家采纳,获得20
3秒前
烟花应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
受伤问凝应助科研通管家采纳,获得10
4秒前
大个应助yuanqi采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
英俊的铭应助sunny采纳,获得10
5秒前
5秒前
passby完成签到,获得积分10
5秒前
5秒前
坚强的傲白完成签到 ,获得积分10
5秒前
JamesPei应助辛勤的向南采纳,获得10
7秒前
nc发布了新的文献求助10
7秒前
cyrong发布了新的文献求助10
8秒前
彭于晏应助迅速的巧曼采纳,获得10
8秒前
紫苏发布了新的文献求助10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Nanostructured Titanium Dioxide Materials 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469346
求助须知:如何正确求助?哪些是违规求助? 3062465
关于积分的说明 9079074
捐赠科研通 2752760
什么是DOI,文献DOI怎么找? 1510621
科研通“疑难数据库(出版商)”最低求助积分说明 697925
邀请新用户注册赠送积分活动 697866