清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A framework of zero-inflated Bayesian negative binomial regression models for spatiotemporal data

负二项分布 计数数据 贝叶斯概率 统计 计算机科学 协方差函数 吉布斯抽样 协方差 数学 泊松分布 算法 计量经济学
作者
Qing He,Hsin‐Hsiung Huang
出处
期刊:Journal of Statistical Planning and Inference [Elsevier BV]
卷期号:229: 106098-106098 被引量:1
标识
DOI:10.1016/j.jspi.2023.106098
摘要

Spatiotemporal data analysis with massive zeros is widely used in many areas such as epidemiology and public health. We use a Bayesian framework to fit zero-inflated negative binomial models and employ a set of latent variables from P\'olya-Gamma distributions to derive an efficient Gibbs sampler. The proposed model accommodates varying spatial and temporal random effects through Gaussian process priors, which have both the simplicity and flexibility in modeling nonlinear relationships through a covariance function. To conquer the computation bottleneck that GPs may suffer when the sample size is large, we adopt the nearest-neighbor GP approach that approximates the covariance matrix using local experts. For the simulation study, we adopt multiple settings with varying sizes of spatial locations to evaluate the performance of the proposed model such as spatial and temporal random effects estimation and compare the result to other methods. We also apply the proposed model to the COVID-19 death counts in the state of Florida, USA from 3/25/2020 through 7/29/2020 to examine relationships between social vulnerability and COVID-19 deaths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY关闭了YY文献求助
9秒前
量子星尘发布了新的文献求助10
17秒前
50秒前
超男完成签到 ,获得积分10
58秒前
CUN完成签到,获得积分10
1分钟前
猫猫i完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
YY驳回了打打应助
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
Qian完成签到 ,获得积分10
3分钟前
白天亮完成签到,获得积分10
3分钟前
宇文非笑完成签到 ,获得积分10
3分钟前
3分钟前
游鱼完成签到,获得积分10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
3分钟前
传奇完成签到 ,获得积分10
3分钟前
3分钟前
什么也难不倒我完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
YY给YY的求助进行了留言
4分钟前
缓慢的忆枫完成签到,获得积分20
4分钟前
zpc猪猪完成签到,获得积分10
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
文献搬运工完成签到 ,获得积分10
5分钟前
GIA完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
陶世立完成签到 ,获得积分10
7分钟前
轻松的甜瓜完成签到,获得积分10
7分钟前
直率的笑翠完成签到 ,获得积分10
7分钟前
英俊的铭应助科研通管家采纳,获得10
7分钟前
nojego完成签到,获得积分10
7分钟前
光合作用完成签到,获得积分10
7分钟前
8分钟前
8分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015250
求助须知:如何正确求助?哪些是违规求助? 3555212
关于积分的说明 11317932
捐赠科研通 3288595
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983