计算机科学
任务(项目管理)
人工智能
分割
模态(人机交互)
方案(数学)
过程(计算)
多任务学习
情态动词
模式
投影(关系代数)
计算机视觉
模式识别(心理学)
机器学习
实时核磁共振成像
磁共振成像
算法
工程类
数学分析
社会学
数学
放射科
化学
高分子化学
系统工程
操作系统
社会科学
医学
作者
Najibul Haque Sarker,M. Sohel Rahman
标识
DOI:10.1109/icip49359.2023.10222929
摘要
Multi-Modal MRI images offer various perspectives for identifying regions of interest in the brain. Previous studies have successfully utilized Deep Learning methods in tasks, such as, segmentation and classification of MRI images, but the proper utilization and integration of Multi-Modality is still an open area of study. Some studies use Multi-Task training scheme which utilizes an auxiliary task like reconstruction for better performance. This paper proposes a novel Multi-Task learning scheme that utilizes different modalities of MRI images to improve brain region segmentation and classification, where the forward diffusion process and a time projection module is used to incorporate a guided reconstruction task. Our experimental results show that the proposed Multi-Task learning strategy outperforms the vanilla Single-Task training scheme by 2.4% in segmentation and 2.7% in classification tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI