亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive selection and optimal combination scheme of candidate models for real-time integrated prediction of urban flood

计算机科学 大洪水 预测建模 随机森林 洪水(心理学) 选型 支持向量机 数据挖掘 洪水警报 决策树 机器学习 心理学 神学 哲学 心理治疗师
作者
Yihong Zhou,Zening Wu,Hongshi Xu,Denghua Yan,Mengmeng Jiang,Xiangyang Zhang,Huiliang Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130152-130152 被引量:13
标识
DOI:10.1016/j.jhydrol.2023.130152
摘要

The ability to predict urban floods is crucial for reducing potential losses. Previous studies suggest that a multimodel combination is an effective way to improve the prediction performance of urban flood models; however, few studies have systematically investigated the impact of candidate models on the performance of the integrated model. Therefore, this study proposes a multimodel integrated forecasting method for urban flooding from the perspective of the response relationship between the candidate models and integrated model. The results of this study suggest that the prediction error of the proposed was reduced by 46.9%–64.6% compared with that of the single model. The results of various candidate model combinations indicate that there is a threshold effect for the number of candidate models in the integrated model; the integrated model with six candidate models exhibited the highest prediction accuracy. However, the increase in the number of candidate models was accompanied by a significant decrease in computational efficiency of the integrated model. Based on the accuracy and timeliness requirements of urban flood prediction, a scheme combining gradient lifting decision tree, random forest, back propagation, and support vector machine models was found to be the best candidate model combination scheme. The real-time warning results of the aforementioned combination model provided superior warning performance. The results of this study provide a reference for the construction of more suitable urban flood models, real-time forecasting, and warnings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2jz发布了新的文献求助10
3秒前
签到发布了新的文献求助30
3秒前
3秒前
5秒前
6秒前
12秒前
Guo发布了新的文献求助10
17秒前
freyaaaaa应助于风采纳,获得100
17秒前
arizaki7应助科研通管家采纳,获得10
26秒前
shhoing应助科研通管家采纳,获得10
26秒前
Orange应助科研通管家采纳,获得10
26秒前
搜集达人应助荷兰香猪采纳,获得10
29秒前
2jz发布了新的文献求助10
31秒前
31秒前
搜集达人应助saywhy采纳,获得10
33秒前
冷静的凝云完成签到 ,获得积分10
34秒前
小伙子完成签到,获得积分10
39秒前
39秒前
40秒前
荷兰香猪发布了新的文献求助10
43秒前
白华苍松发布了新的文献求助10
45秒前
橘子先森发布了新的文献求助10
50秒前
51秒前
53秒前
wanci应助2jz采纳,获得10
54秒前
saywhy发布了新的文献求助10
57秒前
咎不可完成签到,获得积分10
58秒前
NexusExplorer应助saywhy采纳,获得10
1分钟前
1分钟前
1分钟前
七月初七完成签到,获得积分10
1分钟前
秋秋完成签到,获得积分10
1分钟前
整齐晓筠完成签到 ,获得积分10
1分钟前
1分钟前
端庄亦巧完成签到 ,获得积分10
1分钟前
DChen完成签到 ,获得积分10
1分钟前
1分钟前
yipmyonphu完成签到,获得积分10
1分钟前
1分钟前
秋秋发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538556
求助须知:如何正确求助?哪些是违规求助? 4625681
关于积分的说明 14596670
捐赠科研通 4566308
什么是DOI,文献DOI怎么找? 2503215
邀请新用户注册赠送积分活动 1481337
关于科研通互助平台的介绍 1452673