Adaptive selection and optimal combination scheme of candidate models for real-time integrated prediction of urban flood

计算机科学 大洪水 预测建模 随机森林 洪水(心理学) 选型 支持向量机 数据挖掘 洪水警报 决策树 机器学习 心理学 神学 哲学 心理治疗师
作者
Yihong Zhou,Zening Wu,Hongshi Xu,Denghua Yan,Mengmeng Jiang,Xiangyang Zhang,Huiliang Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130152-130152 被引量:13
标识
DOI:10.1016/j.jhydrol.2023.130152
摘要

The ability to predict urban floods is crucial for reducing potential losses. Previous studies suggest that a multimodel combination is an effective way to improve the prediction performance of urban flood models; however, few studies have systematically investigated the impact of candidate models on the performance of the integrated model. Therefore, this study proposes a multimodel integrated forecasting method for urban flooding from the perspective of the response relationship between the candidate models and integrated model. The results of this study suggest that the prediction error of the proposed was reduced by 46.9%–64.6% compared with that of the single model. The results of various candidate model combinations indicate that there is a threshold effect for the number of candidate models in the integrated model; the integrated model with six candidate models exhibited the highest prediction accuracy. However, the increase in the number of candidate models was accompanied by a significant decrease in computational efficiency of the integrated model. Based on the accuracy and timeliness requirements of urban flood prediction, a scheme combining gradient lifting decision tree, random forest, back propagation, and support vector machine models was found to be the best candidate model combination scheme. The real-time warning results of the aforementioned combination model provided superior warning performance. The results of this study provide a reference for the construction of more suitable urban flood models, real-time forecasting, and warnings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡华完成签到 ,获得积分10
1秒前
奋进中的科研小菜鸟完成签到,获得积分10
2秒前
5秒前
星空完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
10秒前
巧克力完成签到 ,获得积分10
10秒前
HU完成签到,获得积分10
11秒前
垣味栗子酱完成签到,获得积分20
12秒前
胖胖玩啊玩完成签到 ,获得积分10
14秒前
Tammy完成签到,获得积分10
14秒前
阿伟完成签到,获得积分10
16秒前
无极微光应助白华苍松采纳,获得20
17秒前
酷酷的安柏完成签到 ,获得积分10
18秒前
19秒前
lovekobe完成签到 ,获得积分10
19秒前
鲁卓林完成签到,获得积分10
19秒前
甜美傲蕾完成签到,获得积分10
20秒前
20秒前
yunt完成签到 ,获得积分10
22秒前
小高完成签到 ,获得积分10
23秒前
kyros完成签到,获得积分10
24秒前
Java完成签到,获得积分10
24秒前
老实的黑米完成签到 ,获得积分10
25秒前
亲爱的桃乐茜完成签到 ,获得积分10
25秒前
WW完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
七yy完成签到 ,获得积分10
28秒前
甜蜜冷风完成签到,获得积分10
30秒前
李思超完成签到 ,获得积分10
30秒前
健壮的凝冬完成签到 ,获得积分10
31秒前
求真完成签到,获得积分10
32秒前
34秒前
浮游应助草木采纳,获得10
34秒前
白夜完成签到 ,获得积分10
34秒前
34秒前
爆米花完成签到,获得积分10
36秒前
36秒前
37秒前
38秒前
yiyi发布了新的文献求助30
40秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590