Adaptive selection and optimal combination scheme of candidate models for real-time integrated prediction of urban flood

计算机科学 大洪水 预测建模 随机森林 洪水(心理学) 选型 支持向量机 数据挖掘 洪水警报 决策树 机器学习 心理学 神学 哲学 心理治疗师
作者
Yihong Zhou,Zening Wu,Hongshi Xu,Denghua Yan,Mengmeng Jiang,Xiangyang Zhang,Huiliang Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130152-130152 被引量:13
标识
DOI:10.1016/j.jhydrol.2023.130152
摘要

The ability to predict urban floods is crucial for reducing potential losses. Previous studies suggest that a multimodel combination is an effective way to improve the prediction performance of urban flood models; however, few studies have systematically investigated the impact of candidate models on the performance of the integrated model. Therefore, this study proposes a multimodel integrated forecasting method for urban flooding from the perspective of the response relationship between the candidate models and integrated model. The results of this study suggest that the prediction error of the proposed was reduced by 46.9%–64.6% compared with that of the single model. The results of various candidate model combinations indicate that there is a threshold effect for the number of candidate models in the integrated model; the integrated model with six candidate models exhibited the highest prediction accuracy. However, the increase in the number of candidate models was accompanied by a significant decrease in computational efficiency of the integrated model. Based on the accuracy and timeliness requirements of urban flood prediction, a scheme combining gradient lifting decision tree, random forest, back propagation, and support vector machine models was found to be the best candidate model combination scheme. The real-time warning results of the aforementioned combination model provided superior warning performance. The results of this study provide a reference for the construction of more suitable urban flood models, real-time forecasting, and warnings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
似风完成签到 ,获得积分10
2秒前
jackie able完成签到,获得积分20
2秒前
斯文败类应助LIUDEHUA采纳,获得10
3秒前
悠旷完成签到 ,获得积分10
4秒前
追风完成签到,获得积分10
4秒前
5秒前
时尚飞阳完成签到,获得积分10
7秒前
雨寒完成签到 ,获得积分10
8秒前
结实以蓝完成签到,获得积分10
8秒前
YTL完成签到,获得积分20
8秒前
9秒前
夏飞飞完成签到,获得积分10
10秒前
goodbuhui完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
yjy123应助Mangues采纳,获得30
13秒前
13秒前
妮露的修狗完成签到,获得积分10
14秒前
东77发布了新的文献求助10
15秒前
LuckyMM完成签到 ,获得积分10
15秒前
魔幻哈密瓜完成签到,获得积分10
16秒前
Pan发布了新的文献求助10
16秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
1r发布了新的文献求助10
18秒前
万能图书馆应助Rinamamiya采纳,获得50
18秒前
深情安青应助lian采纳,获得10
19秒前
2182265539发布了新的文献求助10
19秒前
21秒前
六芒星发布了新的文献求助10
21秒前
wansida完成签到,获得积分10
21秒前
妥妥酱完成签到,获得积分10
22秒前
毛毛余完成签到 ,获得积分10
24秒前
笔记本完成签到,获得积分0
26秒前
csz完成签到,获得积分10
26秒前
bnbn应助新伟张采纳,获得10
28秒前
丈八二桃完成签到,获得积分20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812