Adaptive selection and optimal combination scheme of candidate models for real-time integrated prediction of urban flood

计算机科学 大洪水 预测建模 随机森林 洪水(心理学) 选型 支持向量机 数据挖掘 洪水警报 决策树 机器学习 心理学 神学 哲学 心理治疗师
作者
Yihong Zhou,Zening Wu,Hongshi Xu,Denghua Yan,Mengmeng Jiang,Xiangyang Zhang,Huiliang Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130152-130152 被引量:13
标识
DOI:10.1016/j.jhydrol.2023.130152
摘要

The ability to predict urban floods is crucial for reducing potential losses. Previous studies suggest that a multimodel combination is an effective way to improve the prediction performance of urban flood models; however, few studies have systematically investigated the impact of candidate models on the performance of the integrated model. Therefore, this study proposes a multimodel integrated forecasting method for urban flooding from the perspective of the response relationship between the candidate models and integrated model. The results of this study suggest that the prediction error of the proposed was reduced by 46.9%–64.6% compared with that of the single model. The results of various candidate model combinations indicate that there is a threshold effect for the number of candidate models in the integrated model; the integrated model with six candidate models exhibited the highest prediction accuracy. However, the increase in the number of candidate models was accompanied by a significant decrease in computational efficiency of the integrated model. Based on the accuracy and timeliness requirements of urban flood prediction, a scheme combining gradient lifting decision tree, random forest, back propagation, and support vector machine models was found to be the best candidate model combination scheme. The real-time warning results of the aforementioned combination model provided superior warning performance. The results of this study provide a reference for the construction of more suitable urban flood models, real-time forecasting, and warnings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果果完成签到,获得积分20
1秒前
华仔应助一起去看海采纳,获得10
2秒前
乐乐应助郭子仪采纳,获得10
2秒前
HAOHAO发布了新的文献求助10
3秒前
隐形的雁完成签到,获得积分10
6秒前
只与你完成签到 ,获得积分10
7秒前
8秒前
传奇3应助怡然的扬采纳,获得10
9秒前
9秒前
一起去看海完成签到,获得积分20
9秒前
9秒前
ccm应助清脆琳采纳,获得10
9秒前
NexusExplorer应助果果采纳,获得10
10秒前
13秒前
xmhxpz发布了新的文献求助10
14秒前
DSFSD完成签到,获得积分10
17秒前
17秒前
进口小宵完成签到,获得积分10
19秒前
优秀藏鸟完成签到 ,获得积分10
21秒前
22秒前
泷生发布了新的文献求助10
22秒前
22秒前
23秒前
不配.应助MADAO采纳,获得200
23秒前
24秒前
三月完成签到,获得积分20
25秒前
cizzz发布了新的文献求助10
28秒前
果果发布了新的文献求助10
29秒前
29秒前
29秒前
Criminology34应助nadeem采纳,获得10
31秒前
英俊的铭应助Tom47采纳,获得10
31秒前
33秒前
王小茗发布了新的文献求助10
34秒前
暗中讨饭完成签到,获得积分10
35秒前
Vincent发布了新的文献求助10
36秒前
科研通AI6应助长大水果采纳,获得10
36秒前
37秒前
等待冰之完成签到 ,获得积分10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432