Adaptive selection and optimal combination scheme of candidate models for real-time integrated prediction of urban flood

计算机科学 大洪水 预测建模 随机森林 洪水(心理学) 选型 支持向量机 数据挖掘 洪水警报 决策树 机器学习 心理学 神学 哲学 心理治疗师
作者
Yihong Zhou,Zening Wu,Hongshi Xu,Denghua Yan,Mengmeng Jiang,Xiangyang Zhang,Huiliang Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130152-130152 被引量:13
标识
DOI:10.1016/j.jhydrol.2023.130152
摘要

The ability to predict urban floods is crucial for reducing potential losses. Previous studies suggest that a multimodel combination is an effective way to improve the prediction performance of urban flood models; however, few studies have systematically investigated the impact of candidate models on the performance of the integrated model. Therefore, this study proposes a multimodel integrated forecasting method for urban flooding from the perspective of the response relationship between the candidate models and integrated model. The results of this study suggest that the prediction error of the proposed was reduced by 46.9%–64.6% compared with that of the single model. The results of various candidate model combinations indicate that there is a threshold effect for the number of candidate models in the integrated model; the integrated model with six candidate models exhibited the highest prediction accuracy. However, the increase in the number of candidate models was accompanied by a significant decrease in computational efficiency of the integrated model. Based on the accuracy and timeliness requirements of urban flood prediction, a scheme combining gradient lifting decision tree, random forest, back propagation, and support vector machine models was found to be the best candidate model combination scheme. The real-time warning results of the aforementioned combination model provided superior warning performance. The results of this study provide a reference for the construction of more suitable urban flood models, real-time forecasting, and warnings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱学习完成签到,获得积分10
刚刚
刚刚
小月亮发布了新的文献求助10
刚刚
Lucas应助Da采纳,获得10
刚刚
1秒前
1秒前
大意的语芹完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
nunup5完成签到,获得积分10
4秒前
苟子完成签到,获得积分10
4秒前
4秒前
charint举报远了个方求助涉嫌违规
4秒前
调皮meiling发布了新的文献求助10
5秒前
miko完成签到,获得积分10
5秒前
852应助ZZ采纳,获得10
5秒前
6秒前
6秒前
含蓄的安蕾完成签到,获得积分10
6秒前
饿了发布了新的文献求助10
6秒前
苒苒完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
杨之玉完成签到,获得积分10
7秒前
今后应助1212采纳,获得10
7秒前
8秒前
陈圈圈完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
见微完成签到,获得积分10
9秒前
WYH发布了新的文献求助10
9秒前
10秒前
大模型应助高贵振家采纳,获得10
10秒前
zr117发布了新的文献求助10
10秒前
11秒前
11秒前
cosmos发布了新的文献求助10
11秒前
细心孤云完成签到,获得积分10
11秒前
无私香彤发布了新的文献求助10
12秒前
悦耳短靴完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773843
求助须知:如何正确求助?哪些是违规求助? 5614219
关于积分的说明 15433109
捐赠科研通 4906284
什么是DOI,文献DOI怎么找? 2640157
邀请新用户注册赠送积分活动 1587995
关于科研通互助平台的介绍 1543018