Adaptive selection and optimal combination scheme of candidate models for real-time integrated prediction of urban flood

计算机科学 大洪水 预测建模 随机森林 洪水(心理学) 选型 支持向量机 数据挖掘 洪水警报 决策树 机器学习 心理学 神学 哲学 心理治疗师
作者
Yihong Zhou,Zening Wu,Hongshi Xu,Denghua Yan,Mengmeng Jiang,Xiangyang Zhang,Huiliang Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130152-130152 被引量:13
标识
DOI:10.1016/j.jhydrol.2023.130152
摘要

The ability to predict urban floods is crucial for reducing potential losses. Previous studies suggest that a multimodel combination is an effective way to improve the prediction performance of urban flood models; however, few studies have systematically investigated the impact of candidate models on the performance of the integrated model. Therefore, this study proposes a multimodel integrated forecasting method for urban flooding from the perspective of the response relationship between the candidate models and integrated model. The results of this study suggest that the prediction error of the proposed was reduced by 46.9%–64.6% compared with that of the single model. The results of various candidate model combinations indicate that there is a threshold effect for the number of candidate models in the integrated model; the integrated model with six candidate models exhibited the highest prediction accuracy. However, the increase in the number of candidate models was accompanied by a significant decrease in computational efficiency of the integrated model. Based on the accuracy and timeliness requirements of urban flood prediction, a scheme combining gradient lifting decision tree, random forest, back propagation, and support vector machine models was found to be the best candidate model combination scheme. The real-time warning results of the aforementioned combination model provided superior warning performance. The results of this study provide a reference for the construction of more suitable urban flood models, real-time forecasting, and warnings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
整个好活完成签到,获得积分10
刚刚
hh发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
kk完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
悦耳听芹完成签到 ,获得积分10
1秒前
爱撒娇的冰安完成签到,获得积分10
2秒前
2秒前
2秒前
cinnamonbrd完成签到,获得积分10
2秒前
科研通AI6.1应助zyyyyyy采纳,获得10
3秒前
3秒前
顾矜应助dvd采纳,获得10
4秒前
活力书包完成签到 ,获得积分10
4秒前
5秒前
阿尔辛多完成签到,获得积分10
5秒前
5秒前
欢呼黑猫应助liuyafei采纳,获得10
6秒前
烟花应助111采纳,获得10
7秒前
8秒前
土木研学僧完成签到,获得积分10
8秒前
8秒前
xiaoT发布了新的文献求助10
8秒前
专注的曼寒完成签到 ,获得积分10
9秒前
9秒前
sunmiao完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
微毒麻醉完成签到,获得积分10
11秒前
ljy1111发布了新的文献求助10
11秒前
Cyuan发布了新的文献求助10
11秒前
方方发布了新的文献求助10
11秒前
11秒前
曹定发布了新的文献求助10
12秒前
AliceCute发布了新的文献求助10
12秒前
hh完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082