Adaptive selection and optimal combination scheme of candidate models for real-time integrated prediction of urban flood

计算机科学 大洪水 预测建模 随机森林 洪水(心理学) 选型 支持向量机 数据挖掘 洪水警报 决策树 机器学习 心理学 神学 哲学 心理治疗师
作者
Yihong Zhou,Zening Wu,Hongshi Xu,Denghua Yan,Mengmeng Jiang,Xiangyang Zhang,Huiliang Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130152-130152 被引量:13
标识
DOI:10.1016/j.jhydrol.2023.130152
摘要

The ability to predict urban floods is crucial for reducing potential losses. Previous studies suggest that a multimodel combination is an effective way to improve the prediction performance of urban flood models; however, few studies have systematically investigated the impact of candidate models on the performance of the integrated model. Therefore, this study proposes a multimodel integrated forecasting method for urban flooding from the perspective of the response relationship between the candidate models and integrated model. The results of this study suggest that the prediction error of the proposed was reduced by 46.9%–64.6% compared with that of the single model. The results of various candidate model combinations indicate that there is a threshold effect for the number of candidate models in the integrated model; the integrated model with six candidate models exhibited the highest prediction accuracy. However, the increase in the number of candidate models was accompanied by a significant decrease in computational efficiency of the integrated model. Based on the accuracy and timeliness requirements of urban flood prediction, a scheme combining gradient lifting decision tree, random forest, back propagation, and support vector machine models was found to be the best candidate model combination scheme. The real-time warning results of the aforementioned combination model provided superior warning performance. The results of this study provide a reference for the construction of more suitable urban flood models, real-time forecasting, and warnings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
c7发布了新的文献求助10
刚刚
1秒前
1秒前
科研通AI6应助咩咩羊采纳,获得10
1秒前
华仔应助小仙人球采纳,获得10
1秒前
1秒前
斯文听筠发布了新的文献求助10
2秒前
LL关注了科研通微信公众号
2秒前
afrex完成签到,获得积分10
3秒前
3秒前
南风发布了新的文献求助10
3秒前
傻子也能搞学术吗完成签到 ,获得积分10
4秒前
肥波爱吃鱼完成签到,获得积分10
4秒前
4秒前
田様应助123采纳,获得10
4秒前
奋斗发布了新的文献求助10
4秒前
风间琉璃完成签到,获得积分10
4秒前
5秒前
顾矜应助林夕采纳,获得10
5秒前
5秒前
抵澳报了完成签到,获得积分0
5秒前
狂野的晓曼完成签到,获得积分10
6秒前
6秒前
6秒前
研友_n2r2Kn完成签到,获得积分10
6秒前
Ehgnix完成签到,获得积分10
6秒前
科研通AI6应助香香香采纳,获得30
7秒前
7秒前
晨曦完成签到,获得积分10
7秒前
wendinfgmei发布了新的文献求助10
7秒前
别止完成签到,获得积分10
7秒前
清脆水云发布了新的文献求助10
7秒前
8秒前
Ruoru发布了新的文献求助10
8秒前
8秒前
1111应助科研通管家采纳,获得10
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
1111应助科研通管家采纳,获得10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587104
求助须知:如何正确求助?哪些是违规求助? 4670242
关于积分的说明 14781891
捐赠科研通 4621991
什么是DOI,文献DOI怎么找? 2531119
邀请新用户注册赠送积分活动 1499924
关于科研通互助平台的介绍 1468015