清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Adaptive selection and optimal combination scheme of candidate models for real-time integrated prediction of urban flood

计算机科学 大洪水 预测建模 随机森林 洪水(心理学) 选型 支持向量机 数据挖掘 洪水警报 决策树 机器学习 心理学 神学 哲学 心理治疗师
作者
Yihong Zhou,Zening Wu,Hongshi Xu,Denghua Yan,Mengmeng Jiang,Xiangyang Zhang,Huiliang Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130152-130152 被引量:13
标识
DOI:10.1016/j.jhydrol.2023.130152
摘要

The ability to predict urban floods is crucial for reducing potential losses. Previous studies suggest that a multimodel combination is an effective way to improve the prediction performance of urban flood models; however, few studies have systematically investigated the impact of candidate models on the performance of the integrated model. Therefore, this study proposes a multimodel integrated forecasting method for urban flooding from the perspective of the response relationship between the candidate models and integrated model. The results of this study suggest that the prediction error of the proposed was reduced by 46.9%–64.6% compared with that of the single model. The results of various candidate model combinations indicate that there is a threshold effect for the number of candidate models in the integrated model; the integrated model with six candidate models exhibited the highest prediction accuracy. However, the increase in the number of candidate models was accompanied by a significant decrease in computational efficiency of the integrated model. Based on the accuracy and timeliness requirements of urban flood prediction, a scheme combining gradient lifting decision tree, random forest, back propagation, and support vector machine models was found to be the best candidate model combination scheme. The real-time warning results of the aforementioned combination model provided superior warning performance. The results of this study provide a reference for the construction of more suitable urban flood models, real-time forecasting, and warnings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘刘完成签到 ,获得积分10
22秒前
27秒前
new1完成签到,获得积分10
28秒前
jing完成签到,获得积分20
31秒前
大喜喜发布了新的文献求助10
32秒前
沙海沉戈完成签到,获得积分0
38秒前
阿俊完成签到 ,获得积分10
45秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
SciGPT应助ceeray23采纳,获得20
1分钟前
arniu2008完成签到,获得积分20
1分钟前
2分钟前
soilbeginner发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
直率的笑翠完成签到 ,获得积分10
2分钟前
soilbeginner完成签到,获得积分20
2分钟前
莫miang完成签到,获得积分10
3分钟前
不器完成签到 ,获得积分10
3分钟前
自律完成签到,获得积分10
4分钟前
4分钟前
阿尔法贝塔完成签到 ,获得积分10
4分钟前
黑昼发布了新的文献求助10
4分钟前
天天快乐应助黑昼采纳,获得10
5分钟前
老迟到的友桃完成签到 ,获得积分10
5分钟前
方白秋完成签到,获得积分0
6分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
菠萝包完成签到 ,获得积分10
7分钟前
7分钟前
量子星尘发布了新的文献求助10
8分钟前
ceeray23发布了新的文献求助20
8分钟前
怡然自中完成签到 ,获得积分20
8分钟前
完美世界应助科研通管家采纳,获得10
9分钟前
彭于晏应助科研通管家采纳,获得10
9分钟前
9分钟前
溆玉碎兰笑完成签到 ,获得积分10
9分钟前
wtian完成签到,获得积分10
9分钟前
顾矜应助白日睡觉采纳,获得10
10分钟前
披着羊皮的狼完成签到 ,获得积分10
10分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584778
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771559
捐赠科研通 4614136
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531