独特性
数学
李普希茨连续性
有界函数
反问题
期限(时间)
稳健性(进化)
分数阶微积分
应用数学
反向
数学分析
波动方程
扩散方程
反演(地质)
Mittag-Leffler函数
构造盆地
物理
基因
生物
经济
古生物学
量子力学
经济
化学
生物化学
几何学
服务(商务)
作者
Kaifang Liao,Lei Zhang,Ting Wei
出处
期刊:Journal of Inverse and Ill-posed Problems
[De Gruyter]
日期:2023-09-20
卷期号:31 (5): 631-652
被引量:1
标识
DOI:10.1515/jiip-2020-0057
摘要
Abstract In this article, we consider an inverse problem for determining simultaneously a fractional order and a time-dependent source term in a multi-dimensional time-fractional diffusion-wave equation by a nonlocal condition. Based on a uniformly bounded estimate of the Mittag-Leffler function given in this paper, we prove the uniqueness of the inverse problem and the Lipschitz continuity properties for the direct problem. Then we employ the Levenberg–Marquardt method to recover simultaneously the fractional order and the time source term, and establish a finite-dimensional approximation algorithm to find a regularized numerical solution. Moreover, a fast tensor method for solving the direct problem in the three-dimensional case is provided. Some numerical results in one and multidimensional spaces are presented for showing the robustness of the proposed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI