已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Interval time series forecasting: A systematic literature review

计算机科学 区间(图论) 数据挖掘 时间序列 相关性(法律) 系列(地层学) 运筹学 机器学习 数学 古生物学 组合数学 政治学 法学 生物
作者
Piao Wang,Shahid Hussain Gurmani,Zhifu Tao,Jinpei Liu,Huayou Chen
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (2): 249-285 被引量:10
标识
DOI:10.1002/for.3024
摘要

Abstract Interval time series forecasting can be used for forecasting special symbolic data comprising lower and upper bounds and plays an important role in handling the complexity, instability, and uncertainty of observed objects. The purpose of this research is to identify the most widely used definition of interval time series; classify existing research into mature research, current research focus, and research gaps within the defined framework; and recommend future directions for interval forecasting research. To achieve this goal, we have conducted a systematic literature review, comprising search strategy planning, screening mechanism determination, document analysis, and report generation. During the search strategy planning stage, eight literature search libraries are selected to obtain the most extensive studies (total of 525 targets). In the screening‐mechanism determination stage, through the inclusion and exclusion mechanism, the literature that is repetitive, of low‐relevance, and from other fields are discarded, and 125 studies are finally selected. In the document analysis stage, tag‐based methods and classification grids are selected to analyze the shortlisted studies. The results show that there are still numerous research gaps in interval time series forecasting, such as the establishment of hybrid models, application of multisource information, development and application of evaluation techniques, and expansion of application scenarios. In the report‐generation stage, the problems that have been solved and encountered in interval forecasting are summarized, and future research directions are proposed. Finally, the most significant contribution of this research is to provide an overview of interval time series forecasting for easy reference by researchers and to facilitate further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笔墨今宵关注了科研通微信公众号
3秒前
雷马完成签到,获得积分10
3秒前
4秒前
luwenxuan发布了新的文献求助10
5秒前
Mono完成签到 ,获得积分10
6秒前
雷马发布了新的文献求助10
6秒前
7秒前
Yuki发布了新的文献求助10
8秒前
钉钉完成签到 ,获得积分10
8秒前
10秒前
2224536发布了新的文献求助30
11秒前
鸭梨发布了新的文献求助10
12秒前
香蕉觅云应助luwenxuan采纳,获得10
13秒前
More完成签到,获得积分10
18秒前
栗米ki完成签到,获得积分10
18秒前
别当真完成签到 ,获得积分10
21秒前
源缘完成签到 ,获得积分10
23秒前
野性的小松鼠完成签到 ,获得积分10
25秒前
朴实的小萱完成签到,获得积分10
26秒前
31秒前
深情安青应助多年以后采纳,获得10
32秒前
33秒前
gungun完成签到,获得积分10
36秒前
凤凰山完成签到,获得积分10
36秒前
直率的画笔完成签到,获得积分10
36秒前
37秒前
恋雅颖月应助1234采纳,获得10
37秒前
黄晃晃发布了新的文献求助10
38秒前
NexusExplorer应助科研通管家采纳,获得10
39秒前
40秒前
40秒前
40秒前
烟花应助科研通管家采纳,获得10
40秒前
大个应助科研通管家采纳,获得10
40秒前
40秒前
大个应助科研通管家采纳,获得10
40秒前
40秒前
领导范儿应助科研通管家采纳,获得10
40秒前
Akim应助科研通管家采纳,获得10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989949
求助须知:如何正确求助?哪些是违规求助? 3532017
关于积分的说明 11255865
捐赠科研通 3270829
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882233
科研通“疑难数据库(出版商)”最低求助积分说明 809216