Interval time series forecasting: A systematic literature review

计算机科学 区间(图论) 数据挖掘 时间序列 相关性(法律) 系列(地层学) 运筹学 机器学习 数学 政治学 生物 组合数学 古生物学 法学
作者
Piao Wang,Shahid Hussain Gurmani,Zhifu Tao,Jinpei Liu,Huayou Chen
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (2): 249-285 被引量:10
标识
DOI:10.1002/for.3024
摘要

Abstract Interval time series forecasting can be used for forecasting special symbolic data comprising lower and upper bounds and plays an important role in handling the complexity, instability, and uncertainty of observed objects. The purpose of this research is to identify the most widely used definition of interval time series; classify existing research into mature research, current research focus, and research gaps within the defined framework; and recommend future directions for interval forecasting research. To achieve this goal, we have conducted a systematic literature review, comprising search strategy planning, screening mechanism determination, document analysis, and report generation. During the search strategy planning stage, eight literature search libraries are selected to obtain the most extensive studies (total of 525 targets). In the screening‐mechanism determination stage, through the inclusion and exclusion mechanism, the literature that is repetitive, of low‐relevance, and from other fields are discarded, and 125 studies are finally selected. In the document analysis stage, tag‐based methods and classification grids are selected to analyze the shortlisted studies. The results show that there are still numerous research gaps in interval time series forecasting, such as the establishment of hybrid models, application of multisource information, development and application of evaluation techniques, and expansion of application scenarios. In the report‐generation stage, the problems that have been solved and encountered in interval forecasting are summarized, and future research directions are proposed. Finally, the most significant contribution of this research is to provide an overview of interval time series forecasting for easy reference by researchers and to facilitate further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速凝竹完成签到 ,获得积分10
刚刚
妮妮完成签到,获得积分10
1秒前
1秒前
哈哈哈完成签到,获得积分20
2秒前
快乐随心完成签到 ,获得积分10
3秒前
了一李完成签到 ,获得积分10
3秒前
fqk完成签到,获得积分10
3秒前
活泼新儿完成签到,获得积分10
3秒前
4秒前
老迟到的羊完成签到 ,获得积分10
4秒前
可爱的函函应助sl采纳,获得30
8秒前
CatC完成签到,获得积分10
8秒前
LIKO完成签到,获得积分10
8秒前
8秒前
8秒前
David发布了新的文献求助10
9秒前
9秒前
clock完成签到 ,获得积分10
9秒前
风中小懒虫完成签到,获得积分10
10秒前
cindy完成签到 ,获得积分10
11秒前
Tysonqu完成签到,获得积分10
11秒前
科研通AI2S应助Promise采纳,获得10
12秒前
13秒前
淡淡阁完成签到 ,获得积分10
13秒前
念念发布了新的文献求助10
13秒前
漂亮的秋天完成签到 ,获得积分10
15秒前
David完成签到,获得积分10
15秒前
Jason完成签到,获得积分10
15秒前
19秒前
20秒前
20秒前
YY完成签到,获得积分10
21秒前
调皮的凝旋完成签到,获得积分10
22秒前
22秒前
念念完成签到,获得积分20
23秒前
崔悦欣完成签到,获得积分10
25秒前
xiaosui完成签到 ,获得积分10
25秒前
夏初水莲洁完成签到,获得积分10
26秒前
Jasper应助小王采纳,获得10
26秒前
ZXH完成签到,获得积分10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029