亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interval time series forecasting: A systematic literature review

计算机科学 区间(图论) 数据挖掘 时间序列 相关性(法律) 系列(地层学) 运筹学 机器学习 数学 政治学 生物 组合数学 古生物学 法学
作者
Piao Wang,Shahid Hussain Gurmani,Zhifu Tao,Jinpei Liu,Huayou Chen
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (2): 249-285 被引量:10
标识
DOI:10.1002/for.3024
摘要

Abstract Interval time series forecasting can be used for forecasting special symbolic data comprising lower and upper bounds and plays an important role in handling the complexity, instability, and uncertainty of observed objects. The purpose of this research is to identify the most widely used definition of interval time series; classify existing research into mature research, current research focus, and research gaps within the defined framework; and recommend future directions for interval forecasting research. To achieve this goal, we have conducted a systematic literature review, comprising search strategy planning, screening mechanism determination, document analysis, and report generation. During the search strategy planning stage, eight literature search libraries are selected to obtain the most extensive studies (total of 525 targets). In the screening‐mechanism determination stage, through the inclusion and exclusion mechanism, the literature that is repetitive, of low‐relevance, and from other fields are discarded, and 125 studies are finally selected. In the document analysis stage, tag‐based methods and classification grids are selected to analyze the shortlisted studies. The results show that there are still numerous research gaps in interval time series forecasting, such as the establishment of hybrid models, application of multisource information, development and application of evaluation techniques, and expansion of application scenarios. In the report‐generation stage, the problems that have been solved and encountered in interval forecasting are summarized, and future research directions are proposed. Finally, the most significant contribution of this research is to provide an overview of interval time series forecasting for easy reference by researchers and to facilitate further research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马俊完成签到,获得积分10
8秒前
10秒前
yue完成签到 ,获得积分10
12秒前
wangwangxiao完成签到 ,获得积分10
12秒前
17秒前
17秒前
20秒前
小凯完成签到,获得积分10
21秒前
是个哑巴发布了新的文献求助10
21秒前
22秒前
党弛发布了新的文献求助10
24秒前
洁净的钢笔完成签到 ,获得积分10
28秒前
酷酷问夏完成签到 ,获得积分10
29秒前
42秒前
所所应助Mengzhen Du采纳,获得10
47秒前
Ava应助党弛采纳,获得10
56秒前
Andrewlabeth完成签到 ,获得积分10
1分钟前
酒尚温完成签到 ,获得积分10
1分钟前
敏感的莫言完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助SF2768采纳,获得10
1分钟前
Mengzhen Du发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Wayne完成签到 ,获得积分10
1分钟前
1分钟前
hqq完成签到,获得积分10
1分钟前
Rainsky完成签到 ,获得积分10
1分钟前
1分钟前
fhg完成签到 ,获得积分10
1分钟前
cy发布了新的文献求助10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
善学以致用应助cxy采纳,获得10
1分钟前
cy完成签到,获得积分10
1分钟前
1分钟前
典雅媚颜完成签到,获得积分20
1分钟前
1分钟前
潜行者完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657824
求助须知:如何正确求助?哪些是违规求助? 4812668
关于积分的说明 15080373
捐赠科研通 4816006
什么是DOI,文献DOI怎么找? 2577043
邀请新用户注册赠送积分活动 1532043
关于科研通互助平台的介绍 1490584