Interval time series forecasting: A systematic literature review

计算机科学 区间(图论) 数据挖掘 时间序列 相关性(法律) 系列(地层学) 运筹学 机器学习 数学 政治学 生物 组合数学 古生物学 法学
作者
Piao Wang,Shahid Hussain Gurmani,Zhifu Tao,Jinpei Liu,Huayou Chen
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (2): 249-285 被引量:10
标识
DOI:10.1002/for.3024
摘要

Abstract Interval time series forecasting can be used for forecasting special symbolic data comprising lower and upper bounds and plays an important role in handling the complexity, instability, and uncertainty of observed objects. The purpose of this research is to identify the most widely used definition of interval time series; classify existing research into mature research, current research focus, and research gaps within the defined framework; and recommend future directions for interval forecasting research. To achieve this goal, we have conducted a systematic literature review, comprising search strategy planning, screening mechanism determination, document analysis, and report generation. During the search strategy planning stage, eight literature search libraries are selected to obtain the most extensive studies (total of 525 targets). In the screening‐mechanism determination stage, through the inclusion and exclusion mechanism, the literature that is repetitive, of low‐relevance, and from other fields are discarded, and 125 studies are finally selected. In the document analysis stage, tag‐based methods and classification grids are selected to analyze the shortlisted studies. The results show that there are still numerous research gaps in interval time series forecasting, such as the establishment of hybrid models, application of multisource information, development and application of evaluation techniques, and expansion of application scenarios. In the report‐generation stage, the problems that have been solved and encountered in interval forecasting are summarized, and future research directions are proposed. Finally, the most significant contribution of this research is to provide an overview of interval time series forecasting for easy reference by researchers and to facilitate further research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
大力帽子应助jyq采纳,获得10
1秒前
sdshi发布了新的文献求助10
1秒前
77发布了新的文献求助10
1秒前
chen完成签到 ,获得积分10
3秒前
3秒前
zdq10068发布了新的文献求助10
3秒前
兰瓜瓜发布了新的文献求助10
4秒前
4秒前
Ye完成签到,获得积分10
4秒前
6秒前
是榤啊完成签到 ,获得积分10
6秒前
6秒前
沉静飞雪发布了新的文献求助10
6秒前
7秒前
Rain完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
亮仔发布了新的文献求助10
9秒前
www完成签到,获得积分10
10秒前
Rubyii发布了新的文献求助10
10秒前
zzzzzzz完成签到 ,获得积分10
11秒前
11秒前
11秒前
PORCO完成签到,获得积分10
12秒前
浮游应助Zac采纳,获得10
13秒前
14秒前
英姑应助西子采纳,获得10
15秒前
15秒前
yaoyao发布了新的文献求助10
16秒前
16秒前
yijibaoli完成签到 ,获得积分10
17秒前
17秒前
及禾发布了新的文献求助10
17秒前
研友_n2Qv2L发布了新的文献求助10
17秒前
18秒前
7788完成签到,获得积分10
19秒前
FyD关闭了FyD文献求助
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082