亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interval time series forecasting: A systematic literature review

计算机科学 区间(图论) 数据挖掘 时间序列 相关性(法律) 系列(地层学) 运筹学 机器学习 数学 古生物学 组合数学 政治学 法学 生物
作者
Piao Wang,Shahid Hussain Gurmani,Zhifu Tao,Jinpei Liu,Huayou Chen
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (2): 249-285 被引量:10
标识
DOI:10.1002/for.3024
摘要

Abstract Interval time series forecasting can be used for forecasting special symbolic data comprising lower and upper bounds and plays an important role in handling the complexity, instability, and uncertainty of observed objects. The purpose of this research is to identify the most widely used definition of interval time series; classify existing research into mature research, current research focus, and research gaps within the defined framework; and recommend future directions for interval forecasting research. To achieve this goal, we have conducted a systematic literature review, comprising search strategy planning, screening mechanism determination, document analysis, and report generation. During the search strategy planning stage, eight literature search libraries are selected to obtain the most extensive studies (total of 525 targets). In the screening‐mechanism determination stage, through the inclusion and exclusion mechanism, the literature that is repetitive, of low‐relevance, and from other fields are discarded, and 125 studies are finally selected. In the document analysis stage, tag‐based methods and classification grids are selected to analyze the shortlisted studies. The results show that there are still numerous research gaps in interval time series forecasting, such as the establishment of hybrid models, application of multisource information, development and application of evaluation techniques, and expansion of application scenarios. In the report‐generation stage, the problems that have been solved and encountered in interval forecasting are summarized, and future research directions are proposed. Finally, the most significant contribution of this research is to provide an overview of interval time series forecasting for easy reference by researchers and to facilitate further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石中酒完成签到 ,获得积分10
6秒前
11秒前
大个应助LULU采纳,获得10
18秒前
courage完成签到,获得积分10
22秒前
24秒前
山竹派派完成签到 ,获得积分10
29秒前
有点鸭梨呀完成签到 ,获得积分10
29秒前
科研通AI5应助Lalala采纳,获得10
33秒前
无花果应助xin采纳,获得10
35秒前
王鑫完成签到 ,获得积分10
36秒前
俭朴夜雪完成签到,获得积分10
43秒前
45秒前
Ava应助Lalala采纳,获得30
50秒前
ZR发布了新的文献求助10
50秒前
黄景滨完成签到 ,获得积分10
52秒前
Honor完成签到 ,获得积分10
54秒前
null应助科研通管家采纳,获得10
55秒前
null应助科研通管家采纳,获得10
55秒前
null应助科研通管家采纳,获得10
55秒前
null应助科研通管家采纳,获得10
55秒前
卖辣条的小浣熊完成签到,获得积分10
1分钟前
物理大诗完成签到 ,获得积分10
1分钟前
1分钟前
我是老大应助ZR采纳,获得10
1分钟前
友好胜完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Lalala发布了新的文献求助30
1分钟前
1分钟前
机智的天宇完成签到 ,获得积分10
1分钟前
谈理想发布了新的文献求助20
1分钟前
LMW应助rr123456采纳,获得10
1分钟前
Lalala发布了新的文献求助10
1分钟前
moiumuio完成签到,获得积分10
1分钟前
涵涵涵hh完成签到 ,获得积分10
1分钟前
1分钟前
机灵的衬衫完成签到 ,获得积分10
1分钟前
Lalala完成签到,获得积分10
1分钟前
2分钟前
MTF完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625762
求助须知:如何正确求助?哪些是违规求助? 4024874
关于积分的说明 12458015
捐赠科研通 3709929
什么是DOI,文献DOI怎么找? 2046390
邀请新用户注册赠送积分活动 1078270
科研通“疑难数据库(出版商)”最低求助积分说明 960772