亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interval time series forecasting: A systematic literature review

计算机科学 区间(图论) 数据挖掘 时间序列 相关性(法律) 系列(地层学) 运筹学 机器学习 数学 古生物学 组合数学 政治学 法学 生物
作者
Piao Wang,Shahid Hussain Gurmani,Zhifu Tao,Jinpei Liu,Huayou Chen
出处
期刊:Journal of Forecasting [Wiley]
卷期号:43 (2): 249-285 被引量:10
标识
DOI:10.1002/for.3024
摘要

Abstract Interval time series forecasting can be used for forecasting special symbolic data comprising lower and upper bounds and plays an important role in handling the complexity, instability, and uncertainty of observed objects. The purpose of this research is to identify the most widely used definition of interval time series; classify existing research into mature research, current research focus, and research gaps within the defined framework; and recommend future directions for interval forecasting research. To achieve this goal, we have conducted a systematic literature review, comprising search strategy planning, screening mechanism determination, document analysis, and report generation. During the search strategy planning stage, eight literature search libraries are selected to obtain the most extensive studies (total of 525 targets). In the screening‐mechanism determination stage, through the inclusion and exclusion mechanism, the literature that is repetitive, of low‐relevance, and from other fields are discarded, and 125 studies are finally selected. In the document analysis stage, tag‐based methods and classification grids are selected to analyze the shortlisted studies. The results show that there are still numerous research gaps in interval time series forecasting, such as the establishment of hybrid models, application of multisource information, development and application of evaluation techniques, and expansion of application scenarios. In the report‐generation stage, the problems that have been solved and encountered in interval forecasting are summarized, and future research directions are proposed. Finally, the most significant contribution of this research is to provide an overview of interval time series forecasting for easy reference by researchers and to facilitate further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
2秒前
xlj发布了新的文献求助10
3秒前
3秒前
33发布了新的文献求助10
6秒前
11秒前
zhoufz完成签到,获得积分20
29秒前
里昂发布了新的文献求助60
30秒前
53秒前
阿婧完成签到 ,获得积分10
56秒前
里昂完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
姗姗发布了新的文献求助10
2分钟前
英俊的铭应助姗姗采纳,获得30
2分钟前
姗姗完成签到,获得积分10
2分钟前
852应助堪冷之采纳,获得30
3分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
汉堡包应助科研通管家采纳,获得10
4分钟前
fangye发布了新的文献求助100
4分钟前
4分钟前
xingsixs完成签到 ,获得积分10
5分钟前
整齐的不评完成签到,获得积分10
5分钟前
李健的小迷弟应助xl采纳,获得10
5分钟前
可夫司机完成签到 ,获得积分10
6分钟前
Yian应助科研通管家采纳,获得10
6分钟前
6分钟前
xl发布了新的文献求助10
6分钟前
fangye完成签到,获得积分10
6分钟前
6分钟前
王洋发布了新的文献求助10
6分钟前
7分钟前
xinxin0902发布了新的文献求助10
7分钟前
xinxin0902完成签到,获得积分10
7分钟前
sissiarno应助科研通管家采纳,获得30
8分钟前
温柔板栗应助科研通管家采纳,获得10
8分钟前
sissiarno应助科研通管家采纳,获得30
8分钟前
9分钟前
堪冷之发布了新的文献求助30
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292441
求助须知:如何正确求助?哪些是违规求助? 4442998
关于积分的说明 13830773
捐赠科研通 4326410
什么是DOI,文献DOI怎么找? 2374844
邀请新用户注册赠送积分活动 1370182
关于科研通互助平台的介绍 1334641