亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal Policies for Dynamic Pricing and Inventory Control with Nonparametric Censored Demands

后悔 上下界 非参数统计 估计员 数学优化 数学 计算机科学 计量经济学 数理经济学 统计 数学分析
作者
Boxiao Chen,Yining Wang,Yuan Zhou
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (5): 3362-3380 被引量:21
标识
DOI:10.1287/mnsc.2023.4859
摘要

We study the classic model of joint pricing and inventory control with lost sales over T consecutive review periods. The firm does not know the demand distribution a priori and needs to learn it from historical censored demand data. We develop nonparametric online learning algorithms that converge to the clairvoyant optimal policy at the fastest possible speed. The fundamental challenges rely on that neither zeroth-order nor first-order feedbacks are accessible to the firm and reward at any single price is not observable due to demand censoring. We propose a novel inversion method based on empirical measures to consistently estimate the difference of the instantaneous reward functions at two prices, directly tackling the fundamental challenge brought by censored demands. Based on this technical innovation, we design bisection and trisection search methods that attain an [Formula: see text] regret for the case with concave reward functions, and we design an active tournament elimination method that attains [Formula: see text] regret when the reward functions are nonconcave. We complement the [Formula: see text] regret upper bound with a matching [Formula: see text] regret lower bound. The lower bound is established by a novel information-theoretical argument based on generalized squared Hellinger distance, which is significantly different from conventional arguments that are based on Kullback-Leibler divergence. Both the upper bound technique based on the “difference estimator” and the lower bound technique based on generalized Hellinger distance are new in the literature, and can be potentially applied to solve other inventory or censored demand type problems that involve learning. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4859 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗饭团发布了新的文献求助10
刚刚
高源伯完成签到 ,获得积分10
7秒前
852应助科研通管家采纳,获得10
9秒前
Suzy应助一颗饭团采纳,获得10
9秒前
12秒前
KKKKerwinX完成签到,获得积分20
12秒前
七友发布了新的文献求助10
18秒前
Jasper应助友好的新儿采纳,获得10
21秒前
七友完成签到,获得积分10
30秒前
34秒前
宋小葵发布了新的文献求助20
39秒前
46秒前
57秒前
1分钟前
傲娇的蛋挞完成签到 ,获得积分10
1分钟前
zqq完成签到,获得积分0
1分钟前
阿兹卡班完成签到 ,获得积分10
1分钟前
顾矜应助黄滔采纳,获得10
1分钟前
1分钟前
矢思然完成签到,获得积分10
2分钟前
2分钟前
2分钟前
黄滔发布了新的文献求助10
2分钟前
zhongu发布了新的文献求助10
2分钟前
好好学习完成签到,获得积分10
2分钟前
2分钟前
2分钟前
小哈完成签到 ,获得积分10
2分钟前
从容映易完成签到,获得积分10
3分钟前
3分钟前
3分钟前
传奇3应助甜甜的金鑫采纳,获得10
3分钟前
andrele发布了新的文献求助10
3分钟前
lzxbarry完成签到,获得积分0
3分钟前
王酸菜完成签到 ,获得积分10
3分钟前
臣粉完成签到 ,获得积分10
3分钟前
Owen应助jerseyxue采纳,获得10
3分钟前
小糖完成签到 ,获得积分10
3分钟前
等待的mango完成签到,获得积分10
3分钟前
joanna完成签到,获得积分10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015662
关于积分的说明 8871627
捐赠科研通 2703387
什么是DOI,文献DOI怎么找? 1482240
科研通“疑难数据库(出版商)”最低求助积分说明 685170
邀请新用户注册赠送积分活动 679944