清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimal Policies for Dynamic Pricing and Inventory Control with Nonparametric Censored Demands

后悔 上下界 非参数统计 估计员 数学优化 数学 计算机科学 计量经济学 数理经济学 统计 数学分析
作者
Boxiao Chen,Yining Wang,Yuan Zhou
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:70 (5): 3362-3380 被引量:21
标识
DOI:10.1287/mnsc.2023.4859
摘要

We study the classic model of joint pricing and inventory control with lost sales over T consecutive review periods. The firm does not know the demand distribution a priori and needs to learn it from historical censored demand data. We develop nonparametric online learning algorithms that converge to the clairvoyant optimal policy at the fastest possible speed. The fundamental challenges rely on that neither zeroth-order nor first-order feedbacks are accessible to the firm and reward at any single price is not observable due to demand censoring. We propose a novel inversion method based on empirical measures to consistently estimate the difference of the instantaneous reward functions at two prices, directly tackling the fundamental challenge brought by censored demands. Based on this technical innovation, we design bisection and trisection search methods that attain an [Formula: see text] regret for the case with concave reward functions, and we design an active tournament elimination method that attains [Formula: see text] regret when the reward functions are nonconcave. We complement the [Formula: see text] regret upper bound with a matching [Formula: see text] regret lower bound. The lower bound is established by a novel information-theoretical argument based on generalized squared Hellinger distance, which is significantly different from conventional arguments that are based on Kullback-Leibler divergence. Both the upper bound technique based on the “difference estimator” and the lower bound technique based on generalized Hellinger distance are new in the literature, and can be potentially applied to solve other inventory or censored demand type problems that involve learning. This paper was accepted by Jeannette Song, operations management. Supplemental Material: The data files and online appendix are available at https://doi.org/10.1287/mnsc.2023.4859 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ada完成签到 ,获得积分10
7秒前
笨笨的怜雪完成签到 ,获得积分10
31秒前
CodeCraft应助水雾采纳,获得10
39秒前
彩色的芷容完成签到 ,获得积分10
51秒前
平常以云完成签到 ,获得积分10
53秒前
鲤鱼山人完成签到 ,获得积分10
1分钟前
1分钟前
水雾发布了新的文献求助10
1分钟前
tt完成签到,获得积分10
1分钟前
Fairy完成签到,获得积分10
1分钟前
鹏程万里完成签到,获得积分10
2分钟前
暗号完成签到 ,获得积分0
2分钟前
LJJ完成签到,获得积分10
3分钟前
慕青应助研友_8RyzBZ采纳,获得10
3分钟前
ljl86400完成签到,获得积分10
3分钟前
3分钟前
研友_8RyzBZ发布了新的文献求助10
3分钟前
科研通AI6应助阳光的星月采纳,获得10
4分钟前
大个应助研友_8RyzBZ采纳,获得10
5分钟前
5分钟前
研友_8RyzBZ发布了新的文献求助10
5分钟前
123应助研友_8RyzBZ采纳,获得10
5分钟前
赘婿应助阳光的星月采纳,获得10
5分钟前
外向的妍完成签到,获得积分10
6分钟前
6分钟前
娟子完成签到,获得积分10
7分钟前
7分钟前
lsl应助Atopos采纳,获得30
8分钟前
Criminology34应助Atopos采纳,获得10
8分钟前
9分钟前
9分钟前
9分钟前
嘟嘟完成签到 ,获得积分10
9分钟前
Aray完成签到 ,获得积分10
9分钟前
taster完成签到,获得积分10
10分钟前
10分钟前
光亮静槐完成签到 ,获得积分10
10分钟前
10分钟前
SilverPlane发布了新的文献求助10
10分钟前
SilverPlane完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635162
求助须知:如何正确求助?哪些是违规求助? 4735022
关于积分的说明 14989826
捐赠科研通 4792862
什么是DOI,文献DOI怎么找? 2559967
邀请新用户注册赠送积分活动 1520215
关于科研通互助平台的介绍 1480311