Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning

认知障碍 冲程(发动机) 医学 缺血性中风 认知 心脏病学 机器学习 物理医学与康复 缺血 计算机科学 精神科 机械工程 工程类
作者
Minwoo Lee,Na-Young Yeo,Hyo-Jeong Ahn,Jae‐Sung Lim,Yerim Kim,Sang‐Hwa Lee,Mi Sun Oh,Byung‐Chul Lee,Kyung‐Ho Yu,Chulho Kim
出处
期刊:Alzheimer's Research & Therapy [BioMed Central]
卷期号:15 (1) 被引量:5
标识
DOI:10.1186/s13195-023-01289-4
摘要

Post-stroke cognitive impairment (PSCI) occurs in up to 50% of patients with acute ischemic stroke (AIS). Thus, the prediction of cognitive outcomes in AIS may be useful for treatment decisions. This PSCI cohort study aimed to determine the applicability of a machine learning approach for predicting PSCI after stroke.This retrospective study used a prospective PSCI cohort of patients with AIS. Demographic features, clinical characteristics, and brain imaging variables previously known to be associated with PSCI were included in the analysis. The primary outcome was PSCI at 3-6 months, defined as an adjusted z-score of less than - 2.0 standard deviation in at least one of the four cognitive domains (memory, executive/frontal, visuospatial, and language), using the Korean version of the Vascular Cognitive Impairment Harmonization Standards-Neuropsychological Protocol (VCIHS-NP). We developed four machine learning models (logistic regression, support vector machine, extreme gradient boost, and artificial neural network) and compared their accuracies for outcome variables.A total of 951 patients (mean age 65.7 ± 11.9; male 61.5%) with AIS were included in this study. The area under the curve for the extreme gradient boost and the artificial neural network was the highest (0.7919 and 0.7365, respectively) among the four models for predicting PSCI according to the VCIHS-NP definition. The most important features for predicting PSCI include the presence of cortical infarcts, mesial temporal lobe atrophy, initial stroke severity, stroke history, and strategic lesion infarcts.Our findings indicate that machine-learning algorithms, particularly the extreme gradient boost and the artificial neural network models, can best predict cognitive outcomes after ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研助手6应助能干的吐司采纳,获得10
刚刚
1秒前
CipherSage应助123采纳,获得10
1秒前
1秒前
谦让之云发布了新的文献求助10
2秒前
嗯哼发布了新的文献求助10
2秒前
小蘑菇应助明亮飞双采纳,获得10
3秒前
why发布了新的文献求助10
3秒前
粥粥完成签到 ,获得积分10
3秒前
郭小宝发布了新的文献求助10
3秒前
4秒前
5秒前
白日梦完成签到,获得积分20
5秒前
5秒前
大模型应助张张张采纳,获得10
5秒前
ding应助亭亭1234采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
善学以致用应助苏利文采纳,获得30
9秒前
9秒前
9秒前
xmj完成签到,获得积分10
9秒前
10秒前
aaaaa发布了新的文献求助10
11秒前
123发布了新的文献求助10
13秒前
健忘傲柏完成签到,获得积分10
13秒前
顾矜应助mariawang采纳,获得10
14秒前
可爱的从寒完成签到,获得积分10
14秒前
hyx完成签到,获得积分10
14秒前
明亮飞双发布了新的文献求助10
15秒前
高大一一完成签到,获得积分10
15秒前
图南发布了新的文献求助10
15秒前
大模型应助WSGQT采纳,获得10
16秒前
香蕉觅云应助xxxllllll采纳,获得10
16秒前
YI应助小芭乐采纳,获得10
16秒前
勤奋柚子发布了新的文献求助10
16秒前
17秒前
方赫然完成签到,获得积分0
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021