Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning

认知障碍 冲程(发动机) 医学 缺血性中风 认知 心脏病学 机器学习 物理医学与康复 缺血 计算机科学 精神科 机械工程 工程类
作者
Minwoo Lee,Na-Young Yeo,Hyo-Jeong Ahn,Jae‐Sung Lim,Yerim Kim,Sang‐Hwa Lee,Mi Sun Oh,Byung‐Chul Lee,Kyung‐Ho Yu,Chulho Kim
出处
期刊:Alzheimer's Research & Therapy [BioMed Central]
卷期号:15 (1) 被引量:5
标识
DOI:10.1186/s13195-023-01289-4
摘要

Post-stroke cognitive impairment (PSCI) occurs in up to 50% of patients with acute ischemic stroke (AIS). Thus, the prediction of cognitive outcomes in AIS may be useful for treatment decisions. This PSCI cohort study aimed to determine the applicability of a machine learning approach for predicting PSCI after stroke.This retrospective study used a prospective PSCI cohort of patients with AIS. Demographic features, clinical characteristics, and brain imaging variables previously known to be associated with PSCI were included in the analysis. The primary outcome was PSCI at 3-6 months, defined as an adjusted z-score of less than - 2.0 standard deviation in at least one of the four cognitive domains (memory, executive/frontal, visuospatial, and language), using the Korean version of the Vascular Cognitive Impairment Harmonization Standards-Neuropsychological Protocol (VCIHS-NP). We developed four machine learning models (logistic regression, support vector machine, extreme gradient boost, and artificial neural network) and compared their accuracies for outcome variables.A total of 951 patients (mean age 65.7 ± 11.9; male 61.5%) with AIS were included in this study. The area under the curve for the extreme gradient boost and the artificial neural network was the highest (0.7919 and 0.7365, respectively) among the four models for predicting PSCI according to the VCIHS-NP definition. The most important features for predicting PSCI include the presence of cortical infarcts, mesial temporal lobe atrophy, initial stroke severity, stroke history, and strategic lesion infarcts.Our findings indicate that machine-learning algorithms, particularly the extreme gradient boost and the artificial neural network models, can best predict cognitive outcomes after ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到,获得积分10
2秒前
萧秋灵完成签到,获得积分10
3秒前
缓慢冥幽完成签到,获得积分10
3秒前
旺仔同学完成签到,获得积分10
12秒前
吉以寒完成签到,获得积分10
18秒前
科研老兵完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
23秒前
fys131415完成签到 ,获得积分10
38秒前
执着的忆雪完成签到 ,获得积分10
41秒前
43秒前
闵不悔完成签到,获得积分10
55秒前
阳光火车完成签到 ,获得积分10
56秒前
cc完成签到,获得积分10
59秒前
合适的寄灵完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助cc采纳,获得10
1分钟前
铜泰妍完成签到 ,获得积分10
1分钟前
贝贝完成签到 ,获得积分10
1分钟前
Lrcx完成签到 ,获得积分10
1分钟前
Wen完成签到 ,获得积分10
1分钟前
盘尼西林完成签到 ,获得积分10
1分钟前
LOVE0077完成签到,获得积分10
1分钟前
zhao完成签到,获得积分10
1分钟前
BINBIN完成签到 ,获得积分10
1分钟前
ambrose37完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
fufufu123完成签到 ,获得积分10
1分钟前
开心的大娘完成签到,获得积分10
1分钟前
www完成签到 ,获得积分10
1分钟前
末末完成签到 ,获得积分10
1分钟前
无为完成签到 ,获得积分10
1分钟前
白嫖论文完成签到 ,获得积分10
1分钟前
上官若男应助忧伤的步美采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
从心随缘完成签到 ,获得积分10
2分钟前
花花发布了新的文献求助10
2分钟前
牛奶面包完成签到 ,获得积分10
2分钟前
2分钟前
岁月如歌完成签到 ,获得积分0
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022