Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning

认知障碍 冲程(发动机) 医学 缺血性中风 认知 心脏病学 机器学习 物理医学与康复 缺血 计算机科学 精神科 机械工程 工程类
作者
Minwoo Lee,Na-Young Yeo,Hyo-Jeong Ahn,Jae‐Sung Lim,Yerim Kim,Sang‐Hwa Lee,Mi Sun Oh,Byung‐Chul Lee,Kyung‐Ho Yu,Chulho Kim
出处
期刊:Alzheimer's Research & Therapy [Springer Nature]
卷期号:15 (1) 被引量:5
标识
DOI:10.1186/s13195-023-01289-4
摘要

Post-stroke cognitive impairment (PSCI) occurs in up to 50% of patients with acute ischemic stroke (AIS). Thus, the prediction of cognitive outcomes in AIS may be useful for treatment decisions. This PSCI cohort study aimed to determine the applicability of a machine learning approach for predicting PSCI after stroke.This retrospective study used a prospective PSCI cohort of patients with AIS. Demographic features, clinical characteristics, and brain imaging variables previously known to be associated with PSCI were included in the analysis. The primary outcome was PSCI at 3-6 months, defined as an adjusted z-score of less than - 2.0 standard deviation in at least one of the four cognitive domains (memory, executive/frontal, visuospatial, and language), using the Korean version of the Vascular Cognitive Impairment Harmonization Standards-Neuropsychological Protocol (VCIHS-NP). We developed four machine learning models (logistic regression, support vector machine, extreme gradient boost, and artificial neural network) and compared their accuracies for outcome variables.A total of 951 patients (mean age 65.7 ± 11.9; male 61.5%) with AIS were included in this study. The area under the curve for the extreme gradient boost and the artificial neural network was the highest (0.7919 and 0.7365, respectively) among the four models for predicting PSCI according to the VCIHS-NP definition. The most important features for predicting PSCI include the presence of cortical infarcts, mesial temporal lobe atrophy, initial stroke severity, stroke history, and strategic lesion infarcts.Our findings indicate that machine-learning algorithms, particularly the extreme gradient boost and the artificial neural network models, can best predict cognitive outcomes after ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓代容完成签到 ,获得积分10
1秒前
可爱的函函应助南逸然采纳,获得10
1秒前
HiK完成签到,获得积分10
1秒前
gaos发布了新的文献求助10
1秒前
2秒前
外向从灵发布了新的文献求助10
2秒前
2秒前
萌道完成签到,获得积分20
3秒前
thanhmanhp完成签到,获得积分10
3秒前
doudou发布了新的文献求助10
3秒前
3秒前
有风完成签到,获得积分10
3秒前
tk完成签到 ,获得积分10
4秒前
4秒前
大模型应助蜡笔采纳,获得30
4秒前
liu发布了新的文献求助10
4秒前
完美世界应助咳咳采纳,获得10
5秒前
5秒前
哒哒完成签到,获得积分10
5秒前
李健春完成签到 ,获得积分10
5秒前
ding应助小文采纳,获得10
5秒前
5秒前
6秒前
99完成签到,获得积分10
6秒前
隐形曼青应助迅速的夏兰采纳,获得20
6秒前
Muse完成签到 ,获得积分10
7秒前
圈圈发布了新的文献求助10
7秒前
打打应助时尚的蚂蚁采纳,获得10
8秒前
贾文斌完成签到,获得积分10
8秒前
chinning发布了新的文献求助10
8秒前
完美世界应助wangn采纳,获得10
9秒前
Mid完成签到,获得积分20
9秒前
共享精神应助Morgenstern_ZH采纳,获得10
9秒前
9秒前
9秒前
搞怪画笔完成签到 ,获得积分10
9秒前
皇城有饭局完成签到,获得积分10
9秒前
lvanlvan完成签到,获得积分10
9秒前
哲999发布了新的文献求助10
10秒前
Jadie完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759