Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning

认知障碍 冲程(发动机) 医学 缺血性中风 认知 心脏病学 机器学习 物理医学与康复 缺血 计算机科学 精神科 机械工程 工程类
作者
Minwoo Lee,Na-Young Yeo,Hyo-Jeong Ahn,Jae‐Sung Lim,Yerim Kim,Sang‐Hwa Lee,Mi Sun Oh,Byung‐Chul Lee,Kyung‐Ho Yu,Chulho Kim
出处
期刊:Alzheimer's Research & Therapy [Springer Nature]
卷期号:15 (1) 被引量:5
标识
DOI:10.1186/s13195-023-01289-4
摘要

Post-stroke cognitive impairment (PSCI) occurs in up to 50% of patients with acute ischemic stroke (AIS). Thus, the prediction of cognitive outcomes in AIS may be useful for treatment decisions. This PSCI cohort study aimed to determine the applicability of a machine learning approach for predicting PSCI after stroke.This retrospective study used a prospective PSCI cohort of patients with AIS. Demographic features, clinical characteristics, and brain imaging variables previously known to be associated with PSCI were included in the analysis. The primary outcome was PSCI at 3-6 months, defined as an adjusted z-score of less than - 2.0 standard deviation in at least one of the four cognitive domains (memory, executive/frontal, visuospatial, and language), using the Korean version of the Vascular Cognitive Impairment Harmonization Standards-Neuropsychological Protocol (VCIHS-NP). We developed four machine learning models (logistic regression, support vector machine, extreme gradient boost, and artificial neural network) and compared their accuracies for outcome variables.A total of 951 patients (mean age 65.7 ± 11.9; male 61.5%) with AIS were included in this study. The area under the curve for the extreme gradient boost and the artificial neural network was the highest (0.7919 and 0.7365, respectively) among the four models for predicting PSCI according to the VCIHS-NP definition. The most important features for predicting PSCI include the presence of cortical infarcts, mesial temporal lobe atrophy, initial stroke severity, stroke history, and strategic lesion infarcts.Our findings indicate that machine-learning algorithms, particularly the extreme gradient boost and the artificial neural network models, can best predict cognitive outcomes after ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123发布了新的文献求助10
3秒前
linzw发布了新的文献求助10
3秒前
安双完成签到 ,获得积分10
3秒前
4秒前
春天的粥发布了新的文献求助10
5秒前
5秒前
jin发布了新的文献求助10
6秒前
7秒前
8秒前
汉堡包应助ml采纳,获得10
9秒前
坤坤发布了新的文献求助10
10秒前
ossantu发布了新的文献求助10
12秒前
威武冷雪发布了新的文献求助10
13秒前
9377完成签到 ,获得积分10
14秒前
大个应助坤坤采纳,获得10
14秒前
23完成签到,获得积分10
15秒前
Keming完成签到,获得积分10
15秒前
jj完成签到 ,获得积分20
16秒前
9377关注了科研通微信公众号
17秒前
充电宝应助缓慢谷雪采纳,获得10
20秒前
科研通AI2S应助春曙为最采纳,获得10
20秒前
科研混子完成签到,获得积分10
27秒前
麦田的守望者完成签到,获得积分10
28秒前
现代的紫霜完成签到,获得积分10
29秒前
19应助友好的小翠采纳,获得10
30秒前
ossantu完成签到,获得积分10
30秒前
刻苦黎云完成签到,获得积分10
30秒前
燕子应助亭树采纳,获得50
32秒前
Panda尧完成签到,获得积分10
33秒前
木头杨发布了新的文献求助10
34秒前
勿庸完成签到,获得积分10
35秒前
火花完成签到 ,获得积分10
39秒前
木头杨完成签到,获得积分10
40秒前
41秒前
ste56完成签到,获得积分10
43秒前
45秒前
QxQMDR发布了新的文献求助10
46秒前
坚强莺完成签到,获得积分10
47秒前
852应助Air采纳,获得10
47秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140431
求助须知:如何正确求助?哪些是违规求助? 2791320
关于积分的说明 7798479
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302008
科研通“疑难数据库(出版商)”最低求助积分说明 626359
版权声明 601194