Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning

认知障碍 冲程(发动机) 医学 缺血性中风 认知 心脏病学 机器学习 物理医学与康复 缺血 计算机科学 精神科 机械工程 工程类
作者
Minwoo Lee,Na-Young Yeo,Hyo-Jeong Ahn,Jae‐Sung Lim,Yerim Kim,Sang‐Hwa Lee,Mi Sun Oh,Byung‐Chul Lee,Kyung‐Ho Yu,Chulho Kim
出处
期刊:Alzheimer's Research & Therapy [Springer Nature]
卷期号:15 (1) 被引量:46
标识
DOI:10.1186/s13195-023-01289-4
摘要

Post-stroke cognitive impairment (PSCI) occurs in up to 50% of patients with acute ischemic stroke (AIS). Thus, the prediction of cognitive outcomes in AIS may be useful for treatment decisions. This PSCI cohort study aimed to determine the applicability of a machine learning approach for predicting PSCI after stroke.This retrospective study used a prospective PSCI cohort of patients with AIS. Demographic features, clinical characteristics, and brain imaging variables previously known to be associated with PSCI were included in the analysis. The primary outcome was PSCI at 3-6 months, defined as an adjusted z-score of less than - 2.0 standard deviation in at least one of the four cognitive domains (memory, executive/frontal, visuospatial, and language), using the Korean version of the Vascular Cognitive Impairment Harmonization Standards-Neuropsychological Protocol (VCIHS-NP). We developed four machine learning models (logistic regression, support vector machine, extreme gradient boost, and artificial neural network) and compared their accuracies for outcome variables.A total of 951 patients (mean age 65.7 ± 11.9; male 61.5%) with AIS were included in this study. The area under the curve for the extreme gradient boost and the artificial neural network was the highest (0.7919 and 0.7365, respectively) among the four models for predicting PSCI according to the VCIHS-NP definition. The most important features for predicting PSCI include the presence of cortical infarcts, mesial temporal lobe atrophy, initial stroke severity, stroke history, and strategic lesion infarcts.Our findings indicate that machine-learning algorithms, particularly the extreme gradient boost and the artificial neural network models, can best predict cognitive outcomes after ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qwer完成签到 ,获得积分10
刚刚
1秒前
稳重的如容完成签到,获得积分10
1秒前
平常的梦完成签到,获得积分10
1秒前
LJY完成签到,获得积分10
1秒前
dongjingbutaire完成签到,获得积分10
1秒前
2秒前
li完成签到,获得积分10
2秒前
2秒前
小豆子完成签到,获得积分20
2秒前
2秒前
孤独巡礼完成签到,获得积分10
2秒前
健康豆芽菜完成签到 ,获得积分10
3秒前
3秒前
duke完成签到,获得积分10
3秒前
mount完成签到,获得积分10
3秒前
akjhd完成签到,获得积分20
3秒前
obtmyx完成签到,获得积分10
3秒前
ydxhh完成签到,获得积分10
3秒前
可爱的函函应助宋嬴一采纳,获得10
4秒前
Criminology34应助舒服的茹嫣采纳,获得10
4秒前
5秒前
研究啥发布了新的文献求助10
5秒前
陆小果完成签到,获得积分10
5秒前
6秒前
Dian完成签到,获得积分10
6秒前
xuan完成签到,获得积分10
7秒前
D调的华丽发布了新的文献求助10
7秒前
落后百褶裙完成签到,获得积分10
7秒前
Re完成签到 ,获得积分10
7秒前
popooo完成签到,获得积分10
7秒前
8秒前
8秒前
wjx发布了新的文献求助10
9秒前
神明完成签到,获得积分10
9秒前
知鸢完成签到,获得积分10
9秒前
lgh完成签到,获得积分10
9秒前
XRQ完成签到 ,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242