SC2-Net: Self-supervised learning for multi-view complementarity representation and consistency fusion network

聚类分析 计算机科学 互补性(分子生物学) 一致性(知识库) 人工智能 机器学习 数据挖掘 生物 遗传学
作者
Lan Huang,Xiangyang Fan,Tianlin Xia,Yuhang Li,Youdong Ding
出处
期刊:Neurocomputing [Elsevier]
卷期号:556: 126695-126695 被引量:1
标识
DOI:10.1016/j.neucom.2023.126695
摘要

Multi-view clustering (MVC) seeks to improve the original single-view clustering by exploring the complementarity and consistency contained in multi-view data. While most subspace-based multi-view clustering methods now focus on exploring one of the consistency or complementarity features associated with multi-view datasets, rather than balancing the exploration of them. Meanwhile, the favored approach of combining deep learning tends to design the network structure to be relatively complex and then superimpose the constraints of multiple loss functions. Additionally, training results with unlabeled datasets are often unsatisfactory. To solve the aforementioned concerns, we present an innovative deep convolutional clustering network (SC2-Net) backed by self-supervised learning. SC2-Net learns multi-view complementarity representation and consistency fusion between views which adheres to the two principles of MVC. The clustering labels will be obtained by cooperating with k-means, the overall structure is simple but efficient. In addition, we supervise the network training by using two self-supervised loss functions, making the training process free from using data with annotations. We test the proposed network under multiple sets of experimental parameter combinations and prove its effectiveness and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无花果应助存儿采纳,获得10
1秒前
dora332211完成签到,获得积分10
1秒前
wp发布了新的文献求助10
2秒前
华仔应助哎哟很烦采纳,获得10
2秒前
优等生发布了新的文献求助10
2秒前
夜航鸟完成签到,获得积分10
2秒前
今后应助一独白采纳,获得10
2秒前
3秒前
橙孑完成签到,获得积分10
3秒前
CipherSage应助Aurora采纳,获得10
4秒前
过时的夏云完成签到,获得积分10
5秒前
Paris完成签到 ,获得积分10
6秒前
牛不可发布了新的文献求助10
6秒前
6秒前
发电的皮卡丘完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI5应助乐观猕猴桃采纳,获得10
8秒前
Aqua完成签到,获得积分10
8秒前
9秒前
9秒前
受伤无招完成签到,获得积分20
10秒前
11秒前
kk发布了新的文献求助10
11秒前
11秒前
limin发布了新的文献求助10
12秒前
聪明的鹤完成签到 ,获得积分10
13秒前
科研通AI5应助没有你不行采纳,获得10
13秒前
14秒前
14秒前
14秒前
黑妖发布了新的文献求助10
15秒前
无花果应助123采纳,获得10
15秒前
脑洞疼应助小芦铃采纳,获得10
15秒前
科研通AI5应助lw采纳,获得10
16秒前
Faith完成签到,获得积分10
16秒前
16秒前
16秒前
嗷嗷发布了新的文献求助10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524730
求助须知:如何正确求助?哪些是违规求助? 3105601
关于积分的说明 9275012
捐赠科研通 2802788
什么是DOI,文献DOI怎么找? 1538175
邀请新用户注册赠送积分活动 716104
科研通“疑难数据库(出版商)”最低求助积分说明 709191