Measuring visual and non-visual lighting metrics in building environments with RGB sensors

照度 日光 RGB颜色模型 色度 光谱辐射计 人工智能 计算机视觉 相关系数 色温 计算机科学 数学 光学 统计 反射率 物理
作者
Tran Quoc Khanh,Quang Vinh Trinh,Duc Trung Nguyen,Stefan Klir,Babak Zandi,Alexander Herzog
出处
期刊:Building and Environment [Elsevier]
卷期号:245: 110858-110858
标识
DOI:10.1016/j.buildenv.2023.110858
摘要

Today, a spectroradiometer can measure both visual lighting metrics (illuminance, chromaticity coordinates or color temperature) and non-visual lighting metrics (Circadian Stimulus Model (CS2021) by M. Rea et al. Melanopic Equivalent Daylight (D65) Illuminance (mEDI) in CIE S 026/E: 2018) very well. Unfortunately, their cost and size make them unsuitable for practical measurements after installation. And some commercially available miniature RGB sensors can measure some visual parameters, but the question is whether they can accurately determine both visual and non-visual characteristics for practical evaluation or real-time luminaire control. Therefore, in this work, the mixed light between incident daylight and typical LED (500 lx horizontal illuminance, 4000 K) in a typical office was measured using the CSS45 spectrometer and the AS 73211 RGB sensor. Then 410/516 spectra were used to process the RGB sensor. And the remaining 20% were used to verify the obtained correlations. The correlation coefficient R2 of 0.892 and the RMSE value of 15.436 lx for the relationship between the mEDI values of the RGB sensor and the spectrophotometer and their average color difference Δu'v' of 3.78.10−5 were very good evidence for the processing quality. For verification, the correlation quality parameter pair (R2/RMSE) of CS2021 and Ev also reach the very good values of 0.842/0.015 and 0.78/29.15, respectively. Based on these achievements, it can be confirmed that a commercially available RGB sensor can measure the visual and non-visual parameters of lighting systems accurately enough after installation if it is properly processed as recommended in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助sunzhiyu233采纳,获得10
刚刚
Sherwin完成签到,获得积分10
刚刚
羽毛完成签到,获得积分20
1秒前
xiongjian发布了新的文献求助10
1秒前
一方通行完成签到 ,获得积分10
1秒前
1秒前
monster0101完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
Stvn完成签到,获得积分20
3秒前
核桃发布了新的文献求助10
3秒前
跳跃的太阳完成签到,获得积分10
4秒前
4秒前
enoot完成签到,获得积分10
4秒前
dalin完成签到,获得积分10
4秒前
YE发布了新的文献求助10
4秒前
buno应助外向的沅采纳,获得10
4秒前
体贴啤酒发布了新的文献求助10
5秒前
花痴的谷雪完成签到,获得积分10
5秒前
5秒前
圈圈发布了新的文献求助10
5秒前
亮亮完成签到,获得积分10
5秒前
没有稗子完成签到 ,获得积分10
5秒前
科研小民工应助明亮的斩采纳,获得30
5秒前
6秒前
6秒前
小可发布了新的文献求助10
6秒前
莽哥完成签到,获得积分10
6秒前
小邢一定行完成签到,获得积分10
6秒前
6秒前
叶飞荷发布了新的文献求助10
6秒前
明月清风完成签到,获得积分10
6秒前
Ymj发布了新的文献求助10
6秒前
6秒前
诗谙发布了新的文献求助10
7秒前
屁王发布了新的文献求助10
7秒前
Eric完成签到,获得积分10
7秒前
7秒前
柒柒完成签到,获得积分20
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740