Clinical Proteomics for Solid Organ Tissues

标准化 计算机科学 免疫组织化学 计算生物学 质谱法 分析物 质谱成像 串联质谱法 蛋白质组学 医学 病理 生物 化学 色谱法 生物化学 基因 操作系统
作者
William S. Phipps,Mark Kilgore,Jacob J. Kennedy,Jeffrey R. Whiteaker,Andrew N. Hoofnagle,Amanda G. Paulovich
出处
期刊:Molecular & Cellular Proteomics [Elsevier]
卷期号:22 (11): 100648-100648 被引量:2
标识
DOI:10.1016/j.mcpro.2023.100648
摘要

The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
刚刚
走四方发布了新的文献求助10
1秒前
1秒前
JamesPei应助KEYAN采纳,获得10
2秒前
hellobaboon发布了新的文献求助10
3秒前
林稚发布了新的文献求助30
3秒前
FashionBoy应助word麻鸭采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
万能图书馆应助Vi采纳,获得10
3秒前
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
聪明灵阳应助科研通管家采纳,获得20
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
小鹅应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
小阳发布了新的文献求助10
6秒前
科目三应助北冥有鱼采纳,获得10
7秒前
MaHongyang发布了新的文献求助10
7秒前
7秒前
8秒前
不安青牛应助开心夜阑采纳,获得10
8秒前
R66发布了新的文献求助10
10秒前
11秒前
xx发布了新的文献求助10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490736
求助须知:如何正确求助?哪些是违规求助? 3077538
关于积分的说明 9149233
捐赠科研通 2769733
什么是DOI,文献DOI怎么找? 1519934
邀请新用户注册赠送积分活动 704390
科研通“疑难数据库(出版商)”最低求助积分说明 702148