Emotion quantification and classification using the neutrosophic approach to deep learning

情绪分析 计算机科学 人工智能 自然语言处理 代表(政治) 愤怒 情绪分类 任务(项目管理) 机器学习 心理学 政治学 法学 经济 管理 精神科 政治
作者
Mayukh Sharma,Ilanthenral Kandasamy,W. B. Vasantha Kandasamy
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110896-110896 被引量:4
标识
DOI:10.1016/j.asoc.2023.110896
摘要

Advancements in the rapidly evolving specialization of deep learning have aided in improving several natural language understanding tasks. Sentiment and emotion classification models have improved, but when it comes to fine-grained sentiment analysis, these models can perform better. Human sentiment in natural language is generally an intricate combination of emotions, which can sometimes be indeterminate, neutral, or ambiguous. In the case of fine-grained sentiment analysis, the sentiments can be very similar to each other and interconnected, e.g., anger and fear. Most deep learning systems try to solve the problem of fine-grained sentiment analysis as a classification problem. However, fine-grained sentiments might combine similar emotions with one primary emotion. Trying to solve the problem as a classification task can result in better performance on benchmarks but does not ensure a better understanding and representation of language. The proposed work explores applying neutrosophy for fine-grained sentiment analysis using large language models. Neutrosophy identifies neutralities and employs membership functions (neutral, positive, negative) to quantify an instance into Single Valued Neutrosophic Sets (SVNS). This paper introduces Refined Emotion Neutrosophic Sets (RENS) for emotions (with four emotions) and Refined Ekman’s Emotion Neutrosophic Sets (REENS) with seven emotions. In this paper, refined neutrosophic sets with membership functions are employed for each sentiment across a given taxonomy and assigned their values using the Neutrosophic Iterative Neural Clustering (NINC) algorithm proposed in this paper. It facilitates not only classifying sentiments but also quantifying the presence of each sentiment present in a given sample. It aids in better understanding and representation of samples across multiple sentiments, as in fine-grained sentiment analysis, experiments are performed on the GoEmotions dataset. The proposed approach performs on par with cross-entropy deep learning classifiers and is reproducible across different pre-trained language models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tingting完成签到 ,获得积分10
1秒前
haifeng发布了新的文献求助10
1秒前
瘦瘦白薇完成签到,获得积分10
2秒前
科研通AI6应助cc采纳,获得10
2秒前
科研通AI6应助cc采纳,获得10
2秒前
cliff139完成签到,获得积分10
4秒前
5秒前
爆米花应助小易采纳,获得10
7秒前
zw发布了新的文献求助10
10秒前
嘛呱发布了新的文献求助10
11秒前
12秒前
13秒前
星辰坠于海完成签到,获得积分0
15秒前
大洋葱发布了新的文献求助10
16秒前
共享精神应助缓慢含烟采纳,获得10
17秒前
FFFF发布了新的文献求助10
18秒前
18秒前
longyk完成签到,获得积分10
19秒前
19秒前
20秒前
无私雁菱应助Li采纳,获得10
20秒前
21秒前
23秒前
25秒前
小易发布了新的文献求助10
25秒前
Dr桃桃发布了新的文献求助10
26秒前
哲别发布了新的文献求助10
26秒前
香蕉觅云应助longyk采纳,获得10
27秒前
orixero应助鲜艳的芹采纳,获得10
27秒前
科研通AI6应助LIJIngcan采纳,获得10
28秒前
缓慢含烟发布了新的文献求助10
29秒前
Shubin828完成签到,获得积分10
29秒前
FFFF完成签到,获得积分10
30秒前
酱紫完成签到 ,获得积分10
31秒前
无语完成签到 ,获得积分10
32秒前
汪爷爷发布了新的文献求助10
33秒前
缓慢含烟完成签到,获得积分10
33秒前
35秒前
Dr桃桃完成签到,获得积分10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866