清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Emotion quantification and classification using the neutrosophic approach to deep learning

情绪分析 计算机科学 人工智能 自然语言处理 代表(政治) 愤怒 情绪分类 任务(项目管理) 机器学习 心理学 政治学 法学 经济 管理 精神科 政治
作者
Mayukh Sharma,Ilanthenral Kandasamy,W. B. Vasantha Kandasamy
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110896-110896 被引量:4
标识
DOI:10.1016/j.asoc.2023.110896
摘要

Advancements in the rapidly evolving specialization of deep learning have aided in improving several natural language understanding tasks. Sentiment and emotion classification models have improved, but when it comes to fine-grained sentiment analysis, these models can perform better. Human sentiment in natural language is generally an intricate combination of emotions, which can sometimes be indeterminate, neutral, or ambiguous. In the case of fine-grained sentiment analysis, the sentiments can be very similar to each other and interconnected, e.g., anger and fear. Most deep learning systems try to solve the problem of fine-grained sentiment analysis as a classification problem. However, fine-grained sentiments might combine similar emotions with one primary emotion. Trying to solve the problem as a classification task can result in better performance on benchmarks but does not ensure a better understanding and representation of language. The proposed work explores applying neutrosophy for fine-grained sentiment analysis using large language models. Neutrosophy identifies neutralities and employs membership functions (neutral, positive, negative) to quantify an instance into Single Valued Neutrosophic Sets (SVNS). This paper introduces Refined Emotion Neutrosophic Sets (RENS) for emotions (with four emotions) and Refined Ekman’s Emotion Neutrosophic Sets (REENS) with seven emotions. In this paper, refined neutrosophic sets with membership functions are employed for each sentiment across a given taxonomy and assigned their values using the Neutrosophic Iterative Neural Clustering (NINC) algorithm proposed in this paper. It facilitates not only classifying sentiments but also quantifying the presence of each sentiment present in a given sample. It aids in better understanding and representation of samples across multiple sentiments, as in fine-grained sentiment analysis, experiments are performed on the GoEmotions dataset. The proposed approach performs on par with cross-entropy deep learning classifiers and is reproducible across different pre-trained language models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
义气的钥匙完成签到,获得积分10
39秒前
米奇妙妙屋完成签到,获得积分10
1分钟前
358489228完成签到,获得积分10
1分钟前
sunialnd完成签到,获得积分10
1分钟前
2分钟前
2分钟前
852应助哭泣的犀牛采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
JamesPei应助微笑的鼠标采纳,获得10
3分钟前
3分钟前
Willow完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
hilm完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
鹏虫虫发布了新的文献求助10
4分钟前
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
鹏虫虫发布了新的文献求助10
5分钟前
mama完成签到 ,获得积分10
5分钟前
两个榴莲完成签到,获得积分0
5分钟前
5分钟前
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
6分钟前
老石完成签到 ,获得积分10
7分钟前
8分钟前
激动的似狮完成签到,获得积分10
8分钟前
tt完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
10分钟前
赘婿应助科研通管家采纳,获得10
10分钟前
Owen应助科研通管家采纳,获得10
10分钟前
共享精神应助zcc采纳,获得10
10分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438574
求助须知:如何正确求助?哪些是违规求助? 4549768
关于积分的说明 14220948
捐赠科研通 4470588
什么是DOI,文献DOI怎么找? 2449969
邀请新用户注册赠送积分活动 1440931
关于科研通互助平台的介绍 1417416