Emotion quantification and classification using the neutrosophic approach to deep learning

情绪分析 计算机科学 人工智能 自然语言处理 代表(政治) 愤怒 情绪分类 任务(项目管理) 机器学习 心理学 政治学 法学 经济 管理 精神科 政治
作者
Mayukh Sharma,Ilanthenral Kandasamy,W. B. Vasantha Kandasamy
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110896-110896 被引量:4
标识
DOI:10.1016/j.asoc.2023.110896
摘要

Advancements in the rapidly evolving specialization of deep learning have aided in improving several natural language understanding tasks. Sentiment and emotion classification models have improved, but when it comes to fine-grained sentiment analysis, these models can perform better. Human sentiment in natural language is generally an intricate combination of emotions, which can sometimes be indeterminate, neutral, or ambiguous. In the case of fine-grained sentiment analysis, the sentiments can be very similar to each other and interconnected, e.g., anger and fear. Most deep learning systems try to solve the problem of fine-grained sentiment analysis as a classification problem. However, fine-grained sentiments might combine similar emotions with one primary emotion. Trying to solve the problem as a classification task can result in better performance on benchmarks but does not ensure a better understanding and representation of language. The proposed work explores applying neutrosophy for fine-grained sentiment analysis using large language models. Neutrosophy identifies neutralities and employs membership functions (neutral, positive, negative) to quantify an instance into Single Valued Neutrosophic Sets (SVNS). This paper introduces Refined Emotion Neutrosophic Sets (RENS) for emotions (with four emotions) and Refined Ekman’s Emotion Neutrosophic Sets (REENS) with seven emotions. In this paper, refined neutrosophic sets with membership functions are employed for each sentiment across a given taxonomy and assigned their values using the Neutrosophic Iterative Neural Clustering (NINC) algorithm proposed in this paper. It facilitates not only classifying sentiments but also quantifying the presence of each sentiment present in a given sample. It aids in better understanding and representation of samples across multiple sentiments, as in fine-grained sentiment analysis, experiments are performed on the GoEmotions dataset. The proposed approach performs on par with cross-entropy deep learning classifiers and is reproducible across different pre-trained language models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助LL采纳,获得10
刚刚
1秒前
Lazarus完成签到,获得积分10
1秒前
1秒前
欧小嘢完成签到,获得积分10
2秒前
2秒前
Akim应助润润轩轩采纳,获得10
2秒前
3秒前
3秒前
3秒前
淡淡大山完成签到,获得积分10
3秒前
NexusExplorer应助weihuang采纳,获得10
4秒前
柠檬泡芙完成签到,获得积分10
4秒前
renjh完成签到,获得积分10
4秒前
5秒前
103x发布了新的文献求助10
5秒前
91ge完成签到 ,获得积分10
5秒前
窦无剑发布了新的文献求助10
5秒前
minggalaxy007发布了新的文献求助10
5秒前
哈基米完成签到 ,获得积分10
5秒前
小罗黑的完成签到,获得积分10
5秒前
6秒前
lyl发布了新的文献求助10
6秒前
小布丁发布了新的文献求助10
6秒前
清爽逊完成签到,获得积分20
6秒前
Owen应助阿东c采纳,获得10
6秒前
蓝书签发布了新的文献求助10
6秒前
7秒前
Lwssss发布了新的文献求助10
7秒前
tana98906发布了新的文献求助10
7秒前
7秒前
7秒前
cs发布了新的文献求助10
7秒前
乐观的海发布了新的文献求助10
7秒前
8秒前
阿翼完成签到 ,获得积分10
8秒前
CodeCraft应助Wang采纳,获得10
8秒前
秋秋发布了新的文献求助10
8秒前
9秒前
清爽逊发布了新的文献求助30
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338438
求助须知:如何正确求助?哪些是违规求助? 4475552
关于积分的说明 13928668
捐赠科研通 4370833
什么是DOI,文献DOI怎么找? 2401451
邀请新用户注册赠送积分活动 1394568
关于科研通互助平台的介绍 1366401