Emotion quantification and classification using the neutrosophic approach to deep learning

情绪分析 计算机科学 人工智能 自然语言处理 代表(政治) 愤怒 情绪分类 任务(项目管理) 机器学习 心理学 政治学 法学 经济 管理 精神科 政治
作者
Mayukh Sharma,Ilanthenral Kandasamy,W. B. Vasantha Kandasamy
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110896-110896 被引量:4
标识
DOI:10.1016/j.asoc.2023.110896
摘要

Advancements in the rapidly evolving specialization of deep learning have aided in improving several natural language understanding tasks. Sentiment and emotion classification models have improved, but when it comes to fine-grained sentiment analysis, these models can perform better. Human sentiment in natural language is generally an intricate combination of emotions, which can sometimes be indeterminate, neutral, or ambiguous. In the case of fine-grained sentiment analysis, the sentiments can be very similar to each other and interconnected, e.g., anger and fear. Most deep learning systems try to solve the problem of fine-grained sentiment analysis as a classification problem. However, fine-grained sentiments might combine similar emotions with one primary emotion. Trying to solve the problem as a classification task can result in better performance on benchmarks but does not ensure a better understanding and representation of language. The proposed work explores applying neutrosophy for fine-grained sentiment analysis using large language models. Neutrosophy identifies neutralities and employs membership functions (neutral, positive, negative) to quantify an instance into Single Valued Neutrosophic Sets (SVNS). This paper introduces Refined Emotion Neutrosophic Sets (RENS) for emotions (with four emotions) and Refined Ekman’s Emotion Neutrosophic Sets (REENS) with seven emotions. In this paper, refined neutrosophic sets with membership functions are employed for each sentiment across a given taxonomy and assigned their values using the Neutrosophic Iterative Neural Clustering (NINC) algorithm proposed in this paper. It facilitates not only classifying sentiments but also quantifying the presence of each sentiment present in a given sample. It aids in better understanding and representation of samples across multiple sentiments, as in fine-grained sentiment analysis, experiments are performed on the GoEmotions dataset. The proposed approach performs on par with cross-entropy deep learning classifiers and is reproducible across different pre-trained language models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GuGuGaGaAH发布了新的文献求助10
1秒前
AAA发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
深情冷雪发布了新的文献求助10
1秒前
2秒前
包宇完成签到,获得积分10
2秒前
2秒前
2秒前
降临完成签到,获得积分10
2秒前
Orange应助壮观的可以采纳,获得30
2秒前
君无邪发布了新的文献求助10
3秒前
Owen应助Zeng采纳,获得10
3秒前
Lucas应助xzh采纳,获得10
3秒前
彪壮的金毛完成签到,获得积分10
3秒前
3秒前
酷波er应助单薄枕头采纳,获得10
4秒前
4秒前
舒心乐荷完成签到,获得积分10
5秒前
FashionBoy应助调皮的幻梅采纳,获得10
5秒前
只想摆烂完成签到,获得积分10
5秒前
雨张完成签到,获得积分10
5秒前
6秒前
spc68应助降临采纳,获得10
6秒前
包宇发布了新的文献求助10
6秒前
cbz发布了新的文献求助10
6秒前
难过千凝完成签到 ,获得积分10
6秒前
7秒前
7秒前
情怀应助struggling2026采纳,获得10
7秒前
小齐天发布了新的文献求助10
7秒前
HH发布了新的文献求助10
7秒前
rumor发布了新的文献求助30
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
元谷雪发布了新的文献求助10
9秒前
Toweler发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905