Emotion quantification and classification using the neutrosophic approach to deep learning

情绪分析 计算机科学 人工智能 自然语言处理 代表(政治) 愤怒 情绪分类 任务(项目管理) 机器学习 心理学 政治学 法学 经济 管理 精神科 政治
作者
Mayukh Sharma,Ilanthenral Kandasamy,W. B. Vasantha Kandasamy
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:148: 110896-110896 被引量:4
标识
DOI:10.1016/j.asoc.2023.110896
摘要

Advancements in the rapidly evolving specialization of deep learning have aided in improving several natural language understanding tasks. Sentiment and emotion classification models have improved, but when it comes to fine-grained sentiment analysis, these models can perform better. Human sentiment in natural language is generally an intricate combination of emotions, which can sometimes be indeterminate, neutral, or ambiguous. In the case of fine-grained sentiment analysis, the sentiments can be very similar to each other and interconnected, e.g., anger and fear. Most deep learning systems try to solve the problem of fine-grained sentiment analysis as a classification problem. However, fine-grained sentiments might combine similar emotions with one primary emotion. Trying to solve the problem as a classification task can result in better performance on benchmarks but does not ensure a better understanding and representation of language. The proposed work explores applying neutrosophy for fine-grained sentiment analysis using large language models. Neutrosophy identifies neutralities and employs membership functions (neutral, positive, negative) to quantify an instance into Single Valued Neutrosophic Sets (SVNS). This paper introduces Refined Emotion Neutrosophic Sets (RENS) for emotions (with four emotions) and Refined Ekman’s Emotion Neutrosophic Sets (REENS) with seven emotions. In this paper, refined neutrosophic sets with membership functions are employed for each sentiment across a given taxonomy and assigned their values using the Neutrosophic Iterative Neural Clustering (NINC) algorithm proposed in this paper. It facilitates not only classifying sentiments but also quantifying the presence of each sentiment present in a given sample. It aids in better understanding and representation of samples across multiple sentiments, as in fine-grained sentiment analysis, experiments are performed on the GoEmotions dataset. The proposed approach performs on par with cross-entropy deep learning classifiers and is reproducible across different pre-trained language models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助金色稻谷采纳,获得10
1秒前
小蘑菇应助梁天宇采纳,获得10
1秒前
慕青应助Homura采纳,获得10
1秒前
何1完成签到,获得积分10
2秒前
2秒前
三每发布了新的文献求助10
3秒前
善学以致用应助whlyy采纳,获得10
3秒前
赘婿应助荒1采纳,获得10
3秒前
4秒前
科研通AI5应助hwh采纳,获得10
4秒前
4秒前
hfguwn完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
sube发布了新的文献求助10
6秒前
8秒前
楠瓜发布了新的文献求助80
9秒前
yayah发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
zheng_chen发布了新的文献求助10
10秒前
星辰大海应助王大锤采纳,获得10
10秒前
ZLPY发布了新的文献求助10
11秒前
rye发布了新的文献求助10
11秒前
月亮快打烊吖完成签到 ,获得积分10
12秒前
14秒前
15秒前
15秒前
XXX完成签到,获得积分10
16秒前
研友_VZG7GZ应助zhuhan采纳,获得10
17秒前
夕月发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
20秒前
Ashley完成签到,获得积分10
20秒前
布布完成签到,获得积分10
20秒前
20秒前
百里幻竹发布了新的文献求助10
21秒前
小郑小郑发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4593693
求助须知:如何正确求助?哪些是违规求助? 4006816
关于积分的说明 12406381
捐赠科研通 3684896
什么是DOI,文献DOI怎么找? 2030932
邀请新用户注册赠送积分活动 1064199
科研通“疑难数据库(出版商)”最低求助积分说明 949526