Emotion quantification and classification using the neutrosophic approach to deep learning

情绪分析 计算机科学 人工智能 自然语言处理 代表(政治) 愤怒 情绪分类 任务(项目管理) 机器学习 心理学 政治学 法学 经济 管理 精神科 政治
作者
Mayukh Sharma,Ilanthenral Kandasamy,W. B. Vasantha Kandasamy
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:148: 110896-110896 被引量:4
标识
DOI:10.1016/j.asoc.2023.110896
摘要

Advancements in the rapidly evolving specialization of deep learning have aided in improving several natural language understanding tasks. Sentiment and emotion classification models have improved, but when it comes to fine-grained sentiment analysis, these models can perform better. Human sentiment in natural language is generally an intricate combination of emotions, which can sometimes be indeterminate, neutral, or ambiguous. In the case of fine-grained sentiment analysis, the sentiments can be very similar to each other and interconnected, e.g., anger and fear. Most deep learning systems try to solve the problem of fine-grained sentiment analysis as a classification problem. However, fine-grained sentiments might combine similar emotions with one primary emotion. Trying to solve the problem as a classification task can result in better performance on benchmarks but does not ensure a better understanding and representation of language. The proposed work explores applying neutrosophy for fine-grained sentiment analysis using large language models. Neutrosophy identifies neutralities and employs membership functions (neutral, positive, negative) to quantify an instance into Single Valued Neutrosophic Sets (SVNS). This paper introduces Refined Emotion Neutrosophic Sets (RENS) for emotions (with four emotions) and Refined Ekman’s Emotion Neutrosophic Sets (REENS) with seven emotions. In this paper, refined neutrosophic sets with membership functions are employed for each sentiment across a given taxonomy and assigned their values using the Neutrosophic Iterative Neural Clustering (NINC) algorithm proposed in this paper. It facilitates not only classifying sentiments but also quantifying the presence of each sentiment present in a given sample. It aids in better understanding and representation of samples across multiple sentiments, as in fine-grained sentiment analysis, experiments are performed on the GoEmotions dataset. The proposed approach performs on par with cross-entropy deep learning classifiers and is reproducible across different pre-trained language models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
Linden_bd完成签到 ,获得积分10
2秒前
科研通AI5应助yangyangyang采纳,获得10
2秒前
2秒前
漠北完成签到,获得积分10
2秒前
2秒前
Isabel完成签到 ,获得积分10
3秒前
起风了完成签到,获得积分10
3秒前
4秒前
Zjn-完成签到,获得积分10
4秒前
良辰应助lost采纳,获得10
4秒前
靓丽梦桃完成签到,获得积分20
5秒前
5秒前
0306完成签到,获得积分10
5秒前
李创业完成签到,获得积分10
5秒前
庆次完成签到 ,获得积分10
6秒前
ZY发布了新的文献求助10
6秒前
36456657应助跳跃的罡采纳,获得10
6秒前
36456657应助跳跃的罡采纳,获得10
6秒前
pluto应助跳跃的罡采纳,获得10
6秒前
丘比特应助跳跃的罡采纳,获得10
6秒前
6秒前
左手树完成签到,获得积分10
7秒前
7秒前
踏实的似狮完成签到,获得积分10
7秒前
正直画笔完成签到 ,获得积分10
7秒前
草履虫完成签到 ,获得积分10
8秒前
靓丽梦桃发布了新的文献求助10
8秒前
李创业发布了新的文献求助10
9秒前
炙热冰夏发布了新的文献求助10
9秒前
autobot1完成签到,获得积分10
9秒前
科研通AI5应助111采纳,获得10
9秒前
烟花应助Wang采纳,获得10
9秒前
曼尼发布了新的文献求助10
9秒前
赘婿应助桑姊采纳,获得10
11秒前
斯文败类应助Lvj采纳,获得10
11秒前
SYLH应助YHL采纳,获得10
11秒前
ranqi完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762