BioKG: a comprehensive, large-scale biomedical knowledge graph for AI-powered, data-driven biomedical research

计算机科学 推论 重新调整用途 数据科学 管道(软件) 信息抽取 构造(python库) 鉴定(生物学) 关系抽取 情报检索 人工智能 工程类 植物 生物 程序设计语言 废物管理
作者
Yuan Zhang,Xin Sui,Feng Pan,Kaixian Yu,Keqiao Li,Shubo Tian,Arslan Erdengasileng,Qing Han,Wanjing Wang,Jianan Wang,Jian Wang,Donghu Sun,Henry Shu-Hung Chung,Jun Zhou,Eric S. Zhou,Benjamin Lee,Peili Zhang,Xing Qiu,Tingting Zhao,Jinfeng Zhang
标识
DOI:10.1101/2023.10.13.562216
摘要

To cope with the rapid growth of scientific publications and data in biomedical research, knowledge graphs (KGs) have emerged as a powerful data structure for integrating large volumes of heterogeneous data to facilitate accurate and efficient information retrieval and automated knowledge discovery (AKD). However, transforming unstructured content from scientific literature into KGs has remained a significant challenge, with previous methods unable to achieve human-level accuracy. In this study, we utilized an information extraction pipeline that won first place in the LitCoin NLP Challenge to construct a largescale KG using all PubMed abstracts. The quality of the large-scale information extraction rivals that of human expert annotations, signaling a new era of automatic, high-quality database construction from literature. Our extracted information markedly surpasses the amount of content in manually curated public databases. To enhance the KG's comprehensiveness, we integrated relation data from 40 public databases and relation information inferred from high-throughput genomics data. The comprehensive KG enabled rigorous performance evaluation of AKD, which was infeasible in previous studies. We designed an interpretable, probabilistic-based inference method to identify indirect causal relations and achieved unprecedented results for drug target identification and drug repurposing. Taking lung cancer as an example, we found that 40% of drug targets reported in literature could have been predicted by our algorithm about 15 years ago in a retrospective study, demonstrating that substantial acceleration in scientific discovery could be achieved through automated hypotheses generation and timely dissemination. A cloud-based platform (https://www.biokde.com) was developed for academic users to freely access this rich structured data and associated tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
培养皿发布了新的文献求助10
1秒前
斯文败类应助李白的白123采纳,获得10
1秒前
kaiki完成签到 ,获得积分10
1秒前
sp发布了新的文献求助10
2秒前
诗诗发布了新的文献求助10
2秒前
3秒前
DATyyy完成签到,获得积分10
5秒前
无名老大给羊Q的求助进行了留言
5秒前
5秒前
马六完成签到,获得积分10
5秒前
KOBE完成签到 ,获得积分10
6秒前
6秒前
柳白发布了新的文献求助10
6秒前
科研通AI5应助忠玉采纳,获得10
7秒前
田様应助啵啵采纳,获得10
8秒前
陈皮发布了新的文献求助10
10秒前
我是老大应助迷人幻波采纳,获得10
12秒前
不问悲欢发布了新的文献求助10
12秒前
正直画笔完成签到 ,获得积分10
12秒前
李爱国应助巴山夜雨采纳,获得10
13秒前
李浅墨完成签到 ,获得积分10
13秒前
15秒前
培养皿完成签到,获得积分10
16秒前
xichuanZ应助木木三采纳,获得10
16秒前
18秒前
18秒前
19秒前
会飞的猪崽子完成签到 ,获得积分10
23秒前
dd123完成签到,获得积分10
23秒前
好运连连完成签到 ,获得积分10
24秒前
巴山夜雨发布了新的文献求助10
24秒前
忠玉发布了新的文献求助10
24秒前
24秒前
hhhblabla应助王雪采纳,获得20
25秒前
维特完成签到,获得积分10
25秒前
28秒前
29秒前
ysc发布了新的文献求助30
29秒前
li发布了新的文献求助10
29秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514561
求助须知:如何正确求助?哪些是违规求助? 3096931
关于积分的说明 9233203
捐赠科研通 2791934
什么是DOI,文献DOI怎么找? 1532173
邀请新用户注册赠送积分活动 711816
科研通“疑难数据库(出版商)”最低求助积分说明 707031