Intercomparison of Deep Learning Architectures for the Prediction of Precipitation Fields With a Focus on Extremes

降水 深度学习 计算机科学 稳健性(进化) 气候学 环境科学 定量降水预报 人工智能 百分位 极端天气 机器学习 气象学 气候变化 数学 地理 地质学 统计 海洋学 基因 生物化学 化学
作者
Noelia Otero,Pascal Horton
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (11) 被引量:3
标识
DOI:10.1029/2023wr035088
摘要

Abstract In recent years, the use of deep learning methods has rapidly increased in many research fields. Similarly, they have become a powerful tool within the climate scientific community. Deep learning methods have been successfully applied for different tasks, such as the identification of atmospheric patterns, weather extreme classification, or weather forecasting. However, due to the inherent complexity of atmospheric processes, the ability of deep learning models to simulate natural processes, particularly in the case of weather extremes, is still challenging. Therefore, a thorough evaluation of their performance and robustness in predicting precipitation fields is still needed, especially for extreme precipitation events, which can have devastating consequences in terms of infrastructure damage, economic losses, and even loss of life. In this study, we present a comprehensive evaluation of a set of deep learning architectures to simulate precipitation, including heavy precipitation events (>95th percentile) and extreme events (>99th percentile) over the European domain. Among the architectures analyzed here, the U‐Net network was found to be superior and outperformed the other networks in simulating precipitation events. In particular, we found that a simplified version of the original U‐Net with two encoder‐decoder levels generally achieved similar skill scores than deeper versions for predicting precipitation extremes, while significantly reducing the overall complexity and computing resources. We further assess how the model predicts through the attribution heatmaps from a layer‐wise relevance propagation explainability method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容以山完成签到,获得积分10
1秒前
科研的豪哥完成签到 ,获得积分10
1秒前
科目三应助林瑶采纳,获得10
1秒前
2秒前
2秒前
小小菜鸟芬应助文件撤销了驳回
2秒前
3秒前
3秒前
区区完成签到,获得积分10
4秒前
5秒前
Francohf发布了新的文献求助10
6秒前
Xiaosi完成签到 ,获得积分10
6秒前
飘飘玲应助GGBoy采纳,获得10
7秒前
孙玄泽发布了新的文献求助10
7秒前
hjadgfigi完成签到,获得积分10
8秒前
9秒前
哈哈哈哈哈哈关注了科研通微信公众号
11秒前
温柔的婷发布了新的文献求助30
11秒前
碧蓝的以云完成签到,获得积分10
12秒前
小二郎应助Francohf采纳,获得10
13秒前
芋圆不圆完成签到,获得积分10
13秒前
糖丸完成签到,获得积分10
13秒前
somnus完成签到,获得积分10
16秒前
April_ff应助外向的从波采纳,获得10
16秒前
16秒前
Yi关注了科研通微信公众号
17秒前
18秒前
19秒前
打打应助王悦靓采纳,获得10
19秒前
friendship_x发布了新的文献求助10
20秒前
北一发布了新的文献求助10
20秒前
小鱼干不爱看书完成签到,获得积分10
20秒前
梅天豪完成签到,获得积分20
20秒前
cowmoon完成签到 ,获得积分10
21秒前
林瑶发布了新的文献求助10
22秒前
林俊超完成签到,获得积分10
23秒前
wanci应助外向的绿蓉采纳,获得10
23秒前
jajaqy完成签到,获得积分10
23秒前
王卫完成签到,获得积分10
26秒前
xuli21315完成签到 ,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898