Intercomparison of Deep Learning Architectures for the Prediction of Precipitation Fields With a Focus on Extremes

降水 深度学习 计算机科学 稳健性(进化) 气候学 环境科学 定量降水预报 人工智能 百分位 极端天气 机器学习 气象学 气候变化 数学 地理 地质学 海洋学 统计 化学 基因 生物化学
作者
Noelia Otero,Pascal Horton
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (11) 被引量:3
标识
DOI:10.1029/2023wr035088
摘要

Abstract In recent years, the use of deep learning methods has rapidly increased in many research fields. Similarly, they have become a powerful tool within the climate scientific community. Deep learning methods have been successfully applied for different tasks, such as the identification of atmospheric patterns, weather extreme classification, or weather forecasting. However, due to the inherent complexity of atmospheric processes, the ability of deep learning models to simulate natural processes, particularly in the case of weather extremes, is still challenging. Therefore, a thorough evaluation of their performance and robustness in predicting precipitation fields is still needed, especially for extreme precipitation events, which can have devastating consequences in terms of infrastructure damage, economic losses, and even loss of life. In this study, we present a comprehensive evaluation of a set of deep learning architectures to simulate precipitation, including heavy precipitation events (>95th percentile) and extreme events (>99th percentile) over the European domain. Among the architectures analyzed here, the U‐Net network was found to be superior and outperformed the other networks in simulating precipitation events. In particular, we found that a simplified version of the original U‐Net with two encoder‐decoder levels generally achieved similar skill scores than deeper versions for predicting precipitation extremes, while significantly reducing the overall complexity and computing resources. We further assess how the model predicts through the attribution heatmaps from a layer‐wise relevance propagation explainability method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别皱眉发布了新的文献求助10
刚刚
oceanao应助煮饭吃Zz采纳,获得10
刚刚
zeng123完成签到,获得积分20
1秒前
莫若以明完成签到,获得积分10
1秒前
2秒前
3秒前
重要山彤完成签到 ,获得积分10
3秒前
落夜发布了新的文献求助50
3秒前
ding应助鲤鱼怀绿采纳,获得10
4秒前
z1005完成签到 ,获得积分10
4秒前
星辰大海应助李凤凤采纳,获得10
4秒前
汉堡包应助Antil采纳,获得10
5秒前
5秒前
5秒前
草莓奶昔发布了新的文献求助10
6秒前
敏静发布了新的文献求助10
7秒前
努力勤奋完成签到,获得积分10
8秒前
选择性哑巴完成签到 ,获得积分10
8秒前
辉尝不错发布了新的文献求助10
8秒前
可靠盼旋发布了新的文献求助10
9秒前
小编一枚发布了新的文献求助10
9秒前
9秒前
盛yyyy发布了新的文献求助10
9秒前
米六完成签到 ,获得积分10
10秒前
善学以致用应助zqz采纳,获得10
10秒前
11秒前
saikamlaw完成签到 ,获得积分10
11秒前
一路生花完成签到,获得积分20
11秒前
12秒前
12秒前
12秒前
cz发布了新的文献求助10
12秒前
兴奋的香芦完成签到,获得积分10
12秒前
13秒前
zzzlll完成签到,获得积分10
13秒前
舒心新梅完成签到,获得积分10
14秒前
大有阳光应助行止采纳,获得10
14秒前
小丫头大傻妞完成签到 ,获得积分10
14秒前
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155565
求助须知:如何正确求助?哪些是违规求助? 2806679
关于积分的说明 7870461
捐赠科研通 2465012
什么是DOI,文献DOI怎么找? 1312079
科研通“疑难数据库(出版商)”最低求助积分说明 629860
版权声明 601892