Intercomparison of Deep Learning Architectures for the Prediction of Precipitation Fields With a Focus on Extremes

降水 深度学习 计算机科学 稳健性(进化) 气候学 环境科学 定量降水预报 人工智能 百分位 极端天气 机器学习 气象学 气候变化 数学 地理 地质学 统计 海洋学 基因 生物化学 化学
作者
Noelia Otero,Pascal Horton
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (11) 被引量:3
标识
DOI:10.1029/2023wr035088
摘要

Abstract In recent years, the use of deep learning methods has rapidly increased in many research fields. Similarly, they have become a powerful tool within the climate scientific community. Deep learning methods have been successfully applied for different tasks, such as the identification of atmospheric patterns, weather extreme classification, or weather forecasting. However, due to the inherent complexity of atmospheric processes, the ability of deep learning models to simulate natural processes, particularly in the case of weather extremes, is still challenging. Therefore, a thorough evaluation of their performance and robustness in predicting precipitation fields is still needed, especially for extreme precipitation events, which can have devastating consequences in terms of infrastructure damage, economic losses, and even loss of life. In this study, we present a comprehensive evaluation of a set of deep learning architectures to simulate precipitation, including heavy precipitation events (>95th percentile) and extreme events (>99th percentile) over the European domain. Among the architectures analyzed here, the U‐Net network was found to be superior and outperformed the other networks in simulating precipitation events. In particular, we found that a simplified version of the original U‐Net with two encoder‐decoder levels generally achieved similar skill scores than deeper versions for predicting precipitation extremes, while significantly reducing the overall complexity and computing resources. We further assess how the model predicts through the attribution heatmaps from a layer‐wise relevance propagation explainability method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于生有你完成签到,获得积分10
刚刚
脑洞疼应助xmf采纳,获得10
刚刚
刚刚
刚刚
科目三应助以马为梦采纳,获得10
1秒前
不会飞的超人完成签到,获得积分20
1秒前
李健应助yatou5651采纳,获得10
1秒前
1秒前
从容追命完成签到,获得积分20
1秒前
1秒前
1秒前
传奇3应助Wang采纳,获得200
2秒前
2秒前
小胡完成签到,获得积分10
2秒前
晚霞不晚完成签到,获得积分10
3秒前
mobula完成签到,获得积分20
3秒前
于生有你发布了新的文献求助10
3秒前
null驳回了user应助
3秒前
好运连连完成签到,获得积分10
4秒前
4秒前
zjq发布了新的文献求助10
4秒前
Owen应助叶文轩采纳,获得10
4秒前
自然的代亦完成签到,获得积分10
4秒前
5秒前
5秒前
小胡发布了新的文献求助10
5秒前
5秒前
Cc发布了新的文献求助10
5秒前
6秒前
从容追命发布了新的文献求助30
6秒前
淡定发布了新的文献求助10
6秒前
李健应助justin采纳,获得10
7秒前
zero_two完成签到,获得积分10
7秒前
7秒前
逆时针完成签到,获得积分10
8秒前
8秒前
8秒前
10秒前
热心子轩完成签到,获得积分10
10秒前
Y奥完成签到,获得积分10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646