Intercomparison of Deep Learning Architectures for the Prediction of Precipitation Fields With a Focus on Extremes

降水 深度学习 计算机科学 稳健性(进化) 气候学 环境科学 定量降水预报 人工智能 百分位 极端天气 机器学习 气象学 气候变化 数学 地理 地质学 统计 海洋学 基因 生物化学 化学
作者
Noelia Otero,Pascal Horton
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (11) 被引量:3
标识
DOI:10.1029/2023wr035088
摘要

Abstract In recent years, the use of deep learning methods has rapidly increased in many research fields. Similarly, they have become a powerful tool within the climate scientific community. Deep learning methods have been successfully applied for different tasks, such as the identification of atmospheric patterns, weather extreme classification, or weather forecasting. However, due to the inherent complexity of atmospheric processes, the ability of deep learning models to simulate natural processes, particularly in the case of weather extremes, is still challenging. Therefore, a thorough evaluation of their performance and robustness in predicting precipitation fields is still needed, especially for extreme precipitation events, which can have devastating consequences in terms of infrastructure damage, economic losses, and even loss of life. In this study, we present a comprehensive evaluation of a set of deep learning architectures to simulate precipitation, including heavy precipitation events (>95th percentile) and extreme events (>99th percentile) over the European domain. Among the architectures analyzed here, the U‐Net network was found to be superior and outperformed the other networks in simulating precipitation events. In particular, we found that a simplified version of the original U‐Net with two encoder‐decoder levels generally achieved similar skill scores than deeper versions for predicting precipitation extremes, while significantly reducing the overall complexity and computing resources. We further assess how the model predicts through the attribution heatmaps from a layer‐wise relevance propagation explainability method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李明完成签到 ,获得积分10
3秒前
科研通AI6应助绿颜色采纳,获得10
3秒前
3秒前
野性的曼香完成签到 ,获得积分10
3秒前
领导范儿应助Jimmy Ko采纳,获得10
3秒前
共渡完成签到,获得积分10
4秒前
4秒前
可爱的函函应助一二采纳,获得10
6秒前
苏紫梗桔发布了新的文献求助10
7秒前
123发布了新的文献求助10
8秒前
aaaaa完成签到,获得积分10
9秒前
不再选择完成签到,获得积分10
11秒前
cheese完成签到,获得积分10
14秒前
14秒前
orixero应助可不可以采纳,获得10
16秒前
浮游应助璆璆的虾采纳,获得10
17秒前
云蓝完成签到 ,获得积分10
22秒前
高贵的水杯完成签到,获得积分10
22秒前
wenjuan给wenjuan的求助进行了留言
24秒前
小二郎应助lyh采纳,获得10
24秒前
28秒前
28秒前
小程完成签到 ,获得积分10
30秒前
31秒前
32秒前
32秒前
hh完成签到 ,获得积分20
32秒前
史杜旦腾发布了新的文献求助10
32秒前
35秒前
田様应助机灵的乘云采纳,获得30
35秒前
xcgh给玉面手雷王的求助进行了留言
36秒前
36秒前
FashionBoy应助MakiseKurisu采纳,获得10
36秒前
38秒前
39秒前
colormeblue完成签到 ,获得积分10
39秒前
40秒前
41秒前
jy发布了新的文献求助10
42秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225839
求助须知:如何正确求助?哪些是违规求助? 4397471
关于积分的说明 13686412
捐赠科研通 4261957
什么是DOI,文献DOI怎么找? 2338829
邀请新用户注册赠送积分活动 1336245
关于科研通互助平台的介绍 1292194