Intercomparison of Deep Learning Architectures for the Prediction of Precipitation Fields With a Focus on Extremes

降水 深度学习 计算机科学 稳健性(进化) 气候学 环境科学 定量降水预报 人工智能 百分位 极端天气 机器学习 气象学 气候变化 数学 地理 地质学 统计 海洋学 基因 生物化学 化学
作者
Noelia Otero,Pascal Horton
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (11) 被引量:3
标识
DOI:10.1029/2023wr035088
摘要

Abstract In recent years, the use of deep learning methods has rapidly increased in many research fields. Similarly, they have become a powerful tool within the climate scientific community. Deep learning methods have been successfully applied for different tasks, such as the identification of atmospheric patterns, weather extreme classification, or weather forecasting. However, due to the inherent complexity of atmospheric processes, the ability of deep learning models to simulate natural processes, particularly in the case of weather extremes, is still challenging. Therefore, a thorough evaluation of their performance and robustness in predicting precipitation fields is still needed, especially for extreme precipitation events, which can have devastating consequences in terms of infrastructure damage, economic losses, and even loss of life. In this study, we present a comprehensive evaluation of a set of deep learning architectures to simulate precipitation, including heavy precipitation events (>95th percentile) and extreme events (>99th percentile) over the European domain. Among the architectures analyzed here, the U‐Net network was found to be superior and outperformed the other networks in simulating precipitation events. In particular, we found that a simplified version of the original U‐Net with two encoder‐decoder levels generally achieved similar skill scores than deeper versions for predicting precipitation extremes, while significantly reducing the overall complexity and computing resources. We further assess how the model predicts through the attribution heatmaps from a layer‐wise relevance propagation explainability method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CYL07完成签到 ,获得积分10
1秒前
Archer完成签到,获得积分10
2秒前
2秒前
LJJ完成签到 ,获得积分10
2秒前
rayqiang完成签到,获得积分0
3秒前
susan完成签到 ,获得积分10
3秒前
3秒前
海东来应助科研通管家采纳,获得30
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
4秒前
小美美完成签到 ,获得积分10
4秒前
4秒前
4秒前
安好发布了新的文献求助10
5秒前
6秒前
小马甲应助lhcshuang采纳,获得10
7秒前
李雯完成签到,获得积分10
7秒前
巫马沛春完成签到,获得积分10
7秒前
学术老6完成签到,获得积分10
8秒前
任性半凡完成签到,获得积分10
8秒前
wmuzhao发布了新的文献求助10
9秒前
hao完成签到,获得积分10
10秒前
大吴克发布了新的文献求助10
10秒前
犇骉发布了新的文献求助10
10秒前
泡芙完成签到,获得积分10
10秒前
不想太多发布了新的文献求助10
11秒前
tommmmmm15完成签到,获得积分10
11秒前
SSDlk发布了新的文献求助10
11秒前
黄瓜橙橙发布了新的文献求助10
13秒前
gk完成签到,获得积分10
13秒前
凡而不庸完成签到,获得积分10
14秒前
危机的慕卉完成签到 ,获得积分10
15秒前
骑驴追火箭完成签到,获得积分10
15秒前
15秒前
多喝水我完成签到 ,获得积分10
17秒前
18秒前
俏皮的松鼠完成签到 ,获得积分10
18秒前
芋头读文献完成签到,获得积分10
19秒前
李健应助犹豫的若采纳,获得10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027