材料科学
锂(药物)
电化学
共价键
氧化还原
阳极
离子
热液循环
密度泛函理论
纳米技术
化学工程
电极
物理化学
有机化学
化学
计算化学
医学
工程类
冶金
内分泌学
作者
Yong Zhao,Wenliang Li,Yingqi Li,Tianyu Qiu,Xin Mu,Yuzhu Ma,Yan Zhao,Jingping Zhang,Jiangwei Zhang,Yangguang Li,Huaqiao Tan
标识
DOI:10.1002/adfm.202306598
摘要
Abstract Polyoxometalates (POMs), as a unique class well‐defined metal‐oxo clusters with excellent multielectron redox properties, have attracted extensive attention in the field of energy storage and conversion, but it is still challenging to achieve their highly uniform and stable monodispersed. In this study, for the first time, polyoxovanadate (POV) is used, (NH 4 ) 2 [V IV 3 V V 3 O 10 {NH 2 C(CH 2 O) 3 } 3 ] (tris‐V 6 O 19 ), as nodes and successfully obtain a 3D covalent polyoxovanadate‐organic framework through a green hydrothermal synthesis method, termed POF‐1. Total scattering atomic pair distribution function analysis confirms that POF‐1 has a noninterpenetrated diamond‐like framework, fully exposing the monodispersed tris‐V 6 O 19 , effectively utilizing the active components of V IV /V V and enhancing surface mass transfer. Notably, POF‐1 demonstrates exceptional performance in lithium‐ion batteries, achieving a high reversible capacity of 887.4 mAh g −1 at 0.1 A g −1 and retaining over 92% capacity at 1 C during 1000 cycles. Electrochemistry mechanism and density functional theory calculations reveal that V centers in tris‐V 6 O 19 and carbonyls (C═O) in BDOEB linkers are the main active sites, with each POF‐1 fragment capable of storing up to 14 Li + . This study opens a new pathway for the efficient and green synthesis of new 3D well‐defined POM‐organic frameworks, and shows great application prospect in the field of energy storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI