清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Personalized and adaptive neural networks for pain detection from multi-modal physiological features

计算机科学 特征(语言学) 人工神经网络 人工智能 召回 疼痛评估 协议(科学) 机器学习 灵敏度(控制系统) 模式识别(心理学) 特征提取 过程(计算) 精确性和召回率 特征模型 深度学习 慢性疼痛
作者
Mingzhe Jiang,Riitta Rosio,Sanna Salanterä,Amir M. Rahmani,Pasi Liljeberg,Daniel S. da Silva,Victor Hugo C. de Albuquerque,Wanqing Wu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:235: 121082-121082 被引量:20
标识
DOI:10.1016/j.eswa.2023.121082
摘要

Pain assessment is essential for pain diagnosis and treatment. Automating the assessment process from pain behaviors could be an alternative to self-report; however, inter-subject and time-dynamic differences in pain behaviors hinder pain recognition as generic patterns. To address this problem, we proposed a neural network method integrating pain sensitivity in personalized feature fusion and dynamic feature attention leveraging the Squeeze-and-Excitation block. Ablation results from our physiological pain data show that dynamic attention effectively improved prediction recall through soft physiological feature selection, and fusing pain sensitivity improved precision, yielding better F1-score together. By testing our trained models with external BioVid Heat Pain data, we observed better adaptivity to a different pain protocol with higher accuracy in time-continuous pain detection than simple neural networks. At last, we found our method outperformed SOTA works using the same public database in pain intensity classification and regression, reaching 84.58% accuracy in high pain detection with model pretraining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖小羊完成签到 ,获得积分10
8秒前
方白秋完成签到,获得积分0
26秒前
29秒前
Ajay发布了新的文献求助30
35秒前
CipherSage应助丽海张采纳,获得30
1分钟前
赵一完成签到 ,获得积分10
1分钟前
1分钟前
Prometheusss发布了新的文献求助10
1分钟前
丽海张发布了新的文献求助30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
文静身边充满小确幸完成签到 ,获得积分10
1分钟前
2分钟前
Prometheusss发布了新的文献求助10
2分钟前
Prometheusss完成签到,获得积分10
2分钟前
2分钟前
深海理疗发布了新的文献求助10
2分钟前
al完成签到 ,获得积分0
2分钟前
Prometheusss发布了新的文献求助10
2分钟前
下文献的蜉蝣完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
洁净百川完成签到 ,获得积分10
3分钟前
3分钟前
Prometheusss发布了新的文献求助10
4分钟前
fufufu123完成签到 ,获得积分10
4分钟前
nuoberry发布了新的文献求助30
4分钟前
景安白完成签到 ,获得积分10
5分钟前
5分钟前
nuoberry发布了新的文献求助10
5分钟前
科研通AI2S应助景安白采纳,获得30
5分钟前
田様应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
分析完成签到 ,获得积分10
6分钟前
净净发布了新的文献求助10
6分钟前
nuoberry完成签到,获得积分20
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561583
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678756
捐赠科研通 4588002
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461583