Out-of-set association analysis of lung cancer drugs and symptoms based on clinical case data mining

肺癌 医学 中医药 药方 传统医学 内科学 癌症 肺癌的治疗 重症监护医学 替代医学 病理 药理学
作者
Mei Hong,Zhao Yi-dong,Tao-Li Zhong,Ming Lu,Wen-Hao Sun,Tian-Yuan Chen,Nan Hong,Yao Zhu,Dahai Xu
出处
期刊:Technology and Health Care [IOS Press]
卷期号:32 (2): 849-859
标识
DOI:10.3233/thc-230269
摘要

BACKGROUND: There are 1.8 million lung cancer deaths worldwide, accounting for 18% of global cancer deaths, including 710,000 in China, accounting for 23.8% of all cancer deaths in China. OBJECTIVE: To explore the out-of-set association rules of lung cancer symptoms and drugs through text mining of traditional Chinese medicine (TCM) treatment of lung cancer, and form medical case analysis to analyze the experience of TCM syndrome differentiation in its treatment. METHODS: The medical records of all patients diagnosed with lung cancer in Nanjing Chest Hospital from January to December 2018 were collected, and the out-of-set association analysis was performed using the MedCase v5.2 TCM clinical scientific research auxiliary platform based on the frequent pattern growth enhanced association analysis algorithm. RESULTS: In terms of TCM treatment of lung cancer, the clinical symptoms with high correlation included cough, expectoration, chest distress, and white phlegm; and the drugs with high correlation included Pinellia ternata, licorice root, white Atractylodes rhizome, and Radix Ophiopogonis; with the prescriptions based on Erchen and Maimendong decoctions. CONCLUSION: This analytical study of the medical cases of TCM treatment for lung cancer was performed using data mining techniques, and the out-of-set association rules between clinical symptoms and drugs were analyzed, including the understanding of lung cancer in TCM. Moreover, the essence of experience in drug use was gathered, providing significant scientific guidance for the clinical treatment of lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUZIYI完成签到,获得积分20
1秒前
2秒前
dbdxyty完成签到,获得积分10
2秒前
令狐冲完成签到,获得积分10
3秒前
奶糖最可爱完成签到,获得积分10
3秒前
Kitty完成签到,获得积分10
4秒前
Micheal完成签到,获得积分0
4秒前
专注的树完成签到,获得积分10
5秒前
花生米一粒粒完成签到,获得积分10
5秒前
kkfly完成签到,获得积分10
5秒前
ypljk完成签到,获得积分10
5秒前
gdh发布了新的文献求助10
6秒前
王金金完成签到,获得积分10
6秒前
提莫大将军完成签到,获得积分10
6秒前
6秒前
念与惜完成签到 ,获得积分10
7秒前
7秒前
153495159应助Mengyue采纳,获得28
7秒前
千早爱音完成签到 ,获得积分10
8秒前
镜子完成签到,获得积分10
9秒前
uniquelin完成签到,获得积分10
10秒前
十一玮完成签到,获得积分10
10秒前
淡然的寻冬完成签到 ,获得积分10
10秒前
sln完成签到,获得积分10
11秒前
kakakakak完成签到,获得积分10
11秒前
善学以致用应助xpd采纳,获得10
11秒前
Denmark完成签到 ,获得积分10
12秒前
12秒前
Summer完成签到,获得积分10
12秒前
小蘑菇应助666采纳,获得10
13秒前
寻道图强应助岸芷汀兰采纳,获得200
14秒前
遇见渔火发布了新的文献求助10
14秒前
爸爸完成签到,获得积分10
14秒前
海洋完成签到,获得积分10
14秒前
pfliu完成签到,获得积分10
15秒前
高贵的思天完成签到,获得积分10
15秒前
meizi0109完成签到 ,获得积分10
16秒前
赘婿应助keyan采纳,获得10
16秒前
安诺完成签到,获得积分10
16秒前
camillelizhaohe完成签到,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818798
关于积分的说明 7922523
捐赠科研通 2478563
什么是DOI,文献DOI怎么找? 1320404
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443